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The theory of weak turbulence developed for wind-driven waves in theoretical works
and in recent extensive numerical studies concludes that non-dimensional features
of self-similar wave growth (i.e. wave energy and characteristic frequency) have to
be scaled by internal wave-field properties (fluxes of energy, momentum or wave
action) rather than by external attributes (e.g. wind speed) which have been widely
adopted since the 1960s. Based on the hypothesis of dominant nonlinear transfer, an
asymptotic weakly turbulent relation for the total energy ε and a characteristic wave
frequency ω∗ was derived

ε ω4
∗

g2
= αss

(
ω3

∗ dε/dt

g2

)1/3

.

The self-similarity parameter αss was found in the numerical duration-limited
experiments and was shown to be naturally varying in a relatively narrow range,
being dependent on the energy growth rate only.

In this work, the analytical and numerical conclusions are further verified by means
of known field dependencies for wave energy growth and peak frequency downshift. A
comprehensive set of more than 20 such dependencies, obtained over almost 50 years
of field observations, is analysed. The estimates give αss very close to the numerical
values. They demonstrate that the weakly turbulent law has a general value and
describes the wave evolution well, apart from the earliest and full wave development
stages when nonlinear transfer competes with wave input and dissipation.

1. Introduction
Over some 50 years, the wind-generated ocean waves have been extensively

approached by experimental, numerical and theoretical means. All these approaches
are united by the concept of spectral balance. Hasselmann (1962, 1963a, b) derived
‘from first principles’ the conservative kinetic equation describing this balance in terms
of spectral density of wave action N(k, t) for spatially homogeneous ocean:

∂N(k, t)

∂t
= Snl[N(k)]. (1.1)
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The nonlinear term Snl on the right-hand side of (1.1) is the so-called collision integral
that describes the effect of four-wave resonant interactions. The explicit form of the
term is known and can be found in a number of papers (see e.g. Hasselmann 1962;
Webb 1978; Zakharov 1999; Lavrenov 2003). Generalization of (1.1) for the case of
non-homogeneous ocean,

∂Nk

∂t
+ ∇kωk∇rNk = Snl[N(k)], (1.2)

is trivial, but it implies that inhomogeneity and non-stationarity are weak: the
corresponding terms should have the same weakly nonlinear scaling as the collision
term. In this case, Snl depends on ‘local and instantaneous’ wave spectra only, and
does not depend on time and coordinates explicitly.

The kinetic equations (1.1), (1.2) in their original forms are not complete because
they do not comprise effects of wind-wave interactions and dissipation. Corresponding
terms of wave input Sin and dissipation Sdiss which describe a great number of
physical effects associated with wind-wave development are incorporated into the
kinetic Hasselmann equation phenomenologically

∂Nk

∂t
+ ∇kωk∇rNk = Snl[N(k)] + Sin + Sdiss . (1.3)

Despite the painstaking efforts of both experimentalists and theoreticians, the new
constituents of wind-wave balance in the ‘full’ kinetic equation (1.2) are not well-
known: discrepancies between different estimates can exceed one order in magnitude
(see § 3 and figure 1 in Badulin et al. 2005b). Moreover, mathematical forms of
these terms are unknown: experimental parameterizations, generally, use quasi-
linear functions of spectral density N(k). The uncertainty in non-conservative terms
Sin, Sdiss gives wave modellers a free hand to tune the magnitudes of these terms in
wave-forecasting models. This does not provide any understanding of physical laws
governing growth of wind-driven waves.

An important hypothesis has been formulated by Zakharov (1966) (see also
Zakharov & Zaslavsky 1982): for developing sea nonlinear transfer the term Snl is a
leading term if compared with wave input Sin and dissipation Sdiss . This leadership
has certain constraints. It is not, obviously, the case for matured sea (old wind waves)
when all the constituents contribute equally to the wind-wave balance. An opposite
case of very young waves (very short durations and fetches) falls beyond the scaling
of the kinetic equation itself (see for details Hasselmann 1962; Zakharov 1999). In
particular, wind-wave tanks appear to be inadequate tools for modelling statistical
properties of real wind seas: the largest installations provide first hundreds of wave
periods, at best, while one- to two-order larger scales are required for the kinetic
equation to be valid. Additionally, waves in these tanks are quasi-unidirectional, i.e.
nonlinear resonances in these tanks are corrupted by boundaries unpredictably.

Fortunately, the range of ‘adult’ growing wind-driven seas governed by leading
nonlinear transfer is quite wide. This conclusion has been supported by a numerical
study (Badulin et al. 2005b) and an experimental justification has been presented by
Zakharov (2005b).

The purpose of this paper is to verify the hypothesis of leading nonlinear transfer
for growing wind-driven seas in terms of dependencies of wave growth on duration
and fetch. We use results of numerical studies of the duration-limited growth (Badulin
et al. 2005b) and known fetch-limited experimental dependencies obtained by different
authors.
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A key consequence of dominating nonlinearity in the kinetic equation (1.3) is a
strong tendency of its solutions towards self-similar behaviour. These self-similar
solutions are approximations valid for fetch-limited (stationary) or duration-limited
(spatially homogeneous) set-ups. As a result, total wave energy and characteristic
frequency (mean or spectral peak one) for these self-similar solutions evolve as power
functions of fetch (time)

ε̃(τ ) = ε̃0τ
pτ , ω̃∗(τ ) = ω̃0τ

−qτ , (1.4)

ε̃(χ) = ε̃0χ
pχ , ω̃∗(χ) = ω̃0χ

−qχ . (1.5)

Here τ, χ, ε̃, ω̃∗ are non-dimensional time, fetch, total energy and characteristic
frequency and ε̃0, ω̃0 are corresponding scales of energy and frequency. The scaling
of dependencies (1.4), (1.5) is a delicate matter that will be detailed below.

These particular self-similar solutions (in duration- and fetch-limited cases), in fact,
represent two-parametric families of solutions. As a result, in dependencies (1.4),
(1.5) there are links between exponents and pre-exponents of energy growth and
frequency downshift. Exponents pτ , qτ (pχ, qχ ) are related to each other by a linear
dependence: steeper energy growth gives faster downshift (characteristic frequency
relaxation). Interrelation of pre-exponents ε̃0, ω̃0 has a more complicated form, but
it reflects the basic feature of the conservative kinetic equation (1.2) – the rigid link
between spectral fluxes and spectra themselves. Thus, it provides a bridge to the
classic results of theory of weak turbulence, the stationary Kolmogorov–Zakharov
(KZ) flux solutions (Zakharov & Filonenko 1966; Zakharov & Zaslavsky 1982).

Power-law dependencies (1.4), (1.5) are well-known to everybody who deals with
wind-wave studies: results of measurements of wave growth are usually expressed by
power-law fits (1.4), (1.5). Following Kitaigorodskii (1962), scaling of the dependencies
is defined in a standard way as follows

ω̃ = ωUh/g, ε̃ = εg2/U 4
h , χ = gx/U 2

h , τ = gt/Uh, (1.6)

where Uh is wind speed at a reference height (or its substitute – friction velocity u∗)
and g is acceleration due to gravity. Pre-exponents and exponents vary broadly in
different experiments. For fetch-limited dependencies (1.5), we have (see dependencies
collected in Davidan 1995; Babanin & Soloviev 1998a; Young 1999)

0.7 < pχ < 1.1, 0.23 < qχ < 0.33, (1.7)

0.68 × 10−7 < ε̃0 < 18.9 × 10−7, 10.4 < ω̃0 < 22.7. (1.8)

The great scatter of fitting parameters (e.g. more than an order of magnitude for total
energy) has no explanation within the present vision (mostly experimental) of wave
growth. As Donelan et al. (1992), p. 477) pointed out:

‘Perhaps it is time to abandon the idea that a universal power law for non-dimensional fetch-limited

growth rate is anything more than an idealization.’

In the meantime, a number of workers attempted to reconcile results of different
experiments and to propose a universal dependence (see Wen et al. 1993; Hwang
2006). It is in sharp contrast to our theoretical results: differences in self-similar
solutions that correspond to power-law dependencies (1.4), (1.5) are legitimate and
comprise a family of wave growth dependencies where exponents and pre-exponents
can vary in wide ranges. Thus, there is no universality in the sense of fixed exponents
and pre-exponents of wave growth, but there is a universality of interrelations of
these exponents and pre-exponents. These interrelations can be expressed in compact
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form as a self-similar law of wind-wave growth,

ε ω4
p

g2
= αss

(
ω3

∗ dε/dt

g2

)1/3

, (1.9)

that links total energy, characteristic frequency and net total wave input. We use the
full derivative d/dt to stress the general nature of the law. αss is a self-similarity
parameter that may depend on the scenario (duration- or fetch-limited) and rate
of wave growth (exponents pτ , pχ ). We specify αss below and show that these
dependencies can be considered as relatively weak for typical wind-sea conditions.

The self-similarity of wind-driven seas expressed by (1.9) is just a special case, a
visible part of the leading nonlinear transfer, i.e. of the general weakly turbulent
mechanisms that control wind-wave growth. As is often the case in physics, this
special case appears to be extremely robust. This is why the relationship (1.9) can be
considered as a general law applicable to the wave growth, regardless of a particular
dependence of wind forcing on time (fetch). This law simply reflects an existing link
between total energy and total wave input associated with inverse cascade mechanism.
Hereinafter, we use total wave input to mean the difference between the wind input
and wave energy dissipation, accumulated by the waves. It gives grounds to present
the asymptotic law (1.9) as the weakly turbulent law of wave growth.

The asymptotic self-similar relationship (1.9) is in contrast with a traditional
approach to wave growth. Starting with Kitaigorodskii (1962) (and, in fact, much
earlier), wave growth is scaled by wind speed (see (1.6)) and by the corresponding non-
dimensional parameter of wave age Uh/Cp (or u∗/Cp). Such scaling, in fact, implies a
universality of wind-wave interaction which is not the case. Significant scatter of wave
growth dependencies around a representative one is generally attributed to deviations
from ‘standard’ conditions of wave development owing to, say, gustiness (Abdalla &
Cavaleri 2002), stability of atmosphere, presence of swell, fine-scale inhomogeneity of
wave skewness and asymmetry that can all affect the wave growth rate, sometimes
by a factor of 2–3 (e.g. Donelan et al. 2005). All these factors usually accompany
wave growth which makes the corresponding wave growth description ‘reactive’ with
respect to the wind speed scaling that is not able to account for all details of wind-
wave interaction. On the contrary, our formulation in terms of net total wave input
has a chance to be proactive, i.e. such scaling is able to document wave growth in a
wide range of wind-wave conditions.

In § 2, we provide physical and mathematical background for weakly turbulent self-
similar solutions of the Hasselmann equation (Hasselmann 1962). The experimental
concept of similarity analysis (Kitaigorodskii 1962) and experimental results
themselves (Hasselmann et al. 1973) contain important physical hints towards the
self-similarity. We detail the idea of the split energy balance for growing wind-driven
seas and present simple expressions for the exponents and pre-exponents of wind-wave
growth in duration- and fetch-limited cases.

In § 3, the self-similar law (1.9) of wave growth is verified for duration-limited
numerical experiments. The self-similarity parameter αss of (1.9) is estimated
numerically for a wide range of physical conditions.

In § 4, the theoretical relationships for exponents and pre-exponents of power-law
dependencies (1.4), (1.5) are verified by means of fetch-limited field measurements.
Zakharov (2005b) has demonstrated that exponents of fetch-limited growth in (1.5)
satisfy theoretical relations for approximate self-similar solutions of the Hasselmann
equation well. We extend this analysis to a larger set of fetch-limited sea experiments.
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The self-similarity parameter αss , for the field experiments, appears to be close to
numerical estimates of § 3, i.e. validity of weakly turbulent wave growth law (1.9) does
not depend on experimental set-up (duration- or fetch-limited). This validates the
physical relevance of our approach: the wave energy content is controlled by non-
stationary (duration-limited case) and non-homogeneous (fetch-limited case) parts of
the full derivative of total energy d〈ε〉/dt (total flux) in a similar way.

Discussion and conclusions are given in §§ 5 and 6. In particular, the experimentally
discovered Toba’s law is examined and found to be a particular case of the presented
weakly turbulent law when energy input is constant throughout the wave development.

2. Self-similar solutions and the split balance of growing wind waves
To begin with, we would like to repeat a key message of § 1:

Difficulties of the studies of the ‘full’ Hasselmann equation (1.3) result, first of all, from our poor

knowledge of external forcing terms, wind input and dissipation.

At first glance, hypothesis of the leading role of the nonlinear transfer term Snl

resolves this problem by making possible the asymptotic approach. In the first-order
approximation, we have the conservative Hasselmann equation (1.2) with no external
forcing, while a higher-order approximation takes into account formally small wind
input and dissipation. The idea looks attractive and allows us to avoid a number
of stumbling questions on properties of unknown terms of the external forcing.
Some general features of this forcing turn out to be sufficient to define the wave
development. We should stress that the asymptotic approach does not mean that we
disregard wind input and dissipation, we just put them into their proper place. The
asymptotic scheme has been realized in a number of ways (see Zakharov & Zaslavsky
1983; Zakharov 2005b; Badulin et al. 2006) and taken its form of split balance model
in Badulin et al. (2005a, b, 2006).

The asymptotic procedure, when input and dissipation terms Sin and Sdiss are
assumed to be formally small, leads to the conservative kinetic equation (1.2) in the
lowest order. This equation looks similar to the Boltzmann equation for gasdynamics.
However, there is a dramatic difference between these equations. The Boltzmann
equation is complete and self-sustained. It has a unique solution at any initial
data. Temporal evolution of this solution preserves energy, momentum and total
action (number of particles). On the contrary, the Hasselmann kinetic equation (1.2)
preserves energy and momentum only formally (Pushkarev, Resio & Zakharov 2003,
2004). Because of the presence of the Kolmogorov-type cascades, the energy and the
momentum can ‘leak’ at a high-wavenumber region. This region can also work as
a source of wave action, energy and momentum. Thus, the conservative equation
(1.2) is not ‘complete’. It describes an ‘open system’ and has to be closed with a
‘boundary condition’, suppose, in the form of wave action flux at high frequencies.
The full equation (1.3), with a sufficiently large dissipation term at high frequencies,
appears to be well-posed. The former constants of motion cease to be constants, but
the balance equation for total wave action remains valid and can be used to close the
approximation procedure. The closure equation,〈

∂Nk

∂t
+ ∇kωk∇rNk

〉
= 〈Sf 〉, (2.1)

allows us to advance both in mathematics and in the physics of wave growth. The
system of two equations, conservative Hasselmann equation (1.2) and ‘boundary’ total
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balance condition (2.1), turns out to be much simpler for analytical studies. Unknown
details of wave forcing Sf appear to be of no importance within the asymptotic
approach, they are replaced by total forcing 〈Sf 〉 which is readily observable in field
experiments.

Homogeneity properties of collision integral Snl for deep-water waves

Snl [νN(κk)] = ν3κ19/2Snl [N(k)] (2.2)

give additional help to advance the study (ν, κ are arbitrary positive multipliers). Self-
similar solutions can now be obtained in an explicit form for two important cases of
homogeneous growing wave field (duration-limited case) and stationary spatial growth
(fetch-limited case). Having the conservative kinetic equation (1.2) as a part of the
asymptotic split balance model, we can generalize the classic Kolmogorov–Zakharov
solutions (Zakharov & Filonenko 1966; Zakharov & Zaslavsky 1982; Zakharov,
Falkovich & Lvov 1992) for the case of growing wind sea and arrive on time-(fetch-)
independent Kolmogorov–Zakharov relationships between wave energy and total
wave input.

2.1. Self-similar solutions for duration-limited case

For the deep water case, there is no specific scaling and non-dimensional variables
can be introduced in an arbitrary way

t = τ/ω0, k = k0κ; ω̃ = ω0Ω, Ω =
√

κ, ω0 =
√

gk0. (2.3)

Non-dimensional wave action ñ takes the form

N(k) =
g4

ω9
0

ñ(κ).

Correspondingly,

N(ω, θ ) =
g2

ω6
0

ñ(Ω), E(ω, θ) =
g2

ω5
0

ε̃(Ω, θ). (2.4)

The split balance model (1.1), (2.1) has self-similar solutions

ñ(κ, τ ) = aτ τ
ατ Φβτ

(ξ ), (2.5)

where

ξ = bτκτβτ (2.6)

and relationships

ατ = (19βτ − 2)/4, aτ = b19/4
τ (2.7)

are determined by properties of the homogeneity of the collision integral Snl (2.2). The
solution magnitudes can grow (ατ > 0) while characteristic frequency (wavenumber)
decreases with time (βτ > 0). These solutions can be related with the well-known
phenomenon of downshifting of wind-wave spectra. Solution (2.5) is consistent with
power-law growth of total wave action (energy or momentum). Imposing the second
equation of the split balance model (2.1), we can specify parameter rτ of the family
of self-similar solutions – the exponent of total wave action growth

Ntot ∼ τ rτ , rτ = ατ − 2βτ = (11βτ − 2)/4 = (11ατ − 4)/19. (2.8)

Similarly, for exponents of total energy and momentum, we have

Etot ∼ τpτ , pτ = ατ − 5βτ/2 = (9rτ − 1)/11, (2.9a)

Mtot ∼ τmτ , mτ = ατ − 3βτ = (7rτ − 2)/11. (2.9b)
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The following relationship between exponent of energy growth pτ and exponent of
downshift qτ is of key interest for further discussion

pτ =
9qτ − 1

2
. (2.10)

The shape function Φβτ
(ξ ) in (2.5) obeys the integro-differential equation

[ατΦβτ
+ βτ ξ∇ξΦβτ

]

= 16π5

∫
dξ 1dξ 2dξ 3|T̃ξξ 1ξ 2ξ 3

|2δ(ξ + ξ 1 − ξ 2 − ξ 3)δ(
√

|ξ | +
√

|ξ 1| −
√

|ξ 2| −
√

|ξ 3|)

×
[
Φβτ

(ξ 1)Φβτ
(ξ 2)Φβτ

(ξ 3) + Φβτ
(ξ )Φβτ

(ξ 2)Φβτ
(ξ 3) − Φβτ

(ξ )Φβτ
(ξ 1)Φβτ

(ξ 2)

− Φβτ
(ξ )Φβτ

(ξ 1)Φβτ
(ξ 3)

]
. (2.11)

Properties of solutions for (2.11) have not been studied yet. Numerical study (Badulin
et al. 2005b) of the full kinetic equation (1.3) shows that a strong tendency to the
corresponding approximate solutions does exist, at least for ‘acceptable’ parameters
of spectral growth (see § 3 in Badulin et al. 2005b). The range of the parameters can
be specified as the condition that external forcing (term Sf ) does not grow infinitely
and thus does not become a leading term in the right-hand side of (2.1) at long time.
Thus, we can associate the ‘growing wind sea’ as growth that corresponds to these
acceptable growth rates

ατ > 1, rτ > 7/19, pτ > 4/19, qτ > 3/19, mτ > 1/19. (2.12)

Note that all the exponents rτ , pτ , mτ and the downshift exponent qτ are positive for
the acceptable wind-wave growth (2.12).

2.1.1. Self-similarity of spectral fluxes

Self-similarity of asymptotic solutions (2.5) implies self-similarity of corresponding
spectral fluxes. This allows us to obtain remarkable expressions for non-dimensional
fluxes in terms of the shape function Φβτ

(ξ )

lim
τ→∞

Q̃(Ω̃, τ )

a
11/19
τ τ sq

= Q̃βτ
(ξ ) =

∫ π

−π

∫ |ξ |

0

(
βτ |ξ |2 ∂Φβτ

∂ |ξ | + ατ |ξ |Φβτ

)
d|ξ |dθ

=

[∫ π

−π

βτ |ξ |2Φβτ
dθ

∣∣∣∣|ξ |

0

+ rτ

∫ π

−π

∫ |ξ |

0

|ξ |Φβτ
d|ξ |dθ

]
, (2.13)

lim
τ→∞

P̃ (Ω̃, τ )

a
9/19
τ τ sp

= P̃βτ
(ξ ) = −

∫ π

−π

∫ |ξ |

0

(
βτ |ξ |5/2 ∂Φβτ

∂ |ξ | + ατ |ξ |3/2Φβτ

)
d|ξ |dθ

= −
[∫ π

−π

βτ |ξ |5/2Φβτ
(ξ )dθ

∣∣∣∣|ξ |

0

+ pτ

∫ π

−π

∫ |ξ |

0

|ξ |3/2Φβτ
d|ξ |dθ

]
, (2.14)

lim
τ→∞

K̃(Ω̃, τ )

a
7/19
τ τ sm

= K̃βτ
(ξ ) = −

∫ π

−π

∫ |ξ |

0

(
βτ |ξ |3 ∂Φβτ

∂ |ξ | + ατ |ξ |2Φβτ

)
d|ξ |dθ

= −
[∫ π

−π

βτ |ξ |3Φβτ
(ξ )dθ

∣∣∣∣|ξ |

0

+ mτ

∫ π

−π

∫ |ξ |

0

|ξ |2Φβτ
d|ξ |dθ

]
(2.15)

where exponents of time dependencies are

sq = rτ − 1, sp = pτ − 1, sm = mτ − 1.
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The result of the integration is of fundamental interest: for positive exponents of
wave action growth rτ and energy growth pτ , signs of fluxes Q and P are fixed and
correspond to an inverse cascade regime, i.e. Q > 0, P < 0. The momentum flux is
negative (again an inverse cascade) for the acceptable rates (2.12). Note that small
rates rτ < 7/19 are of little interest for our analysis because the smallness of external
forcing Sf as compared with collision integral Snl is questionable in this case (see
(2.12)).

The case of swell is of special interest. Parameter pτ is negative for swell and both
types of cascade co-exist for wave energy and momentum: an inverse cascade in a
low-frequency band (small |ξ |) and a leakage of energy and momentum (a direct
cascade) to high frequencies.

The ‘boundary condition’ (2.1) of the split balance model can be rewritten in terms
of spectral fluxes at infinitely high frequency (total wave input or total flux). For total
energy we have 〈

∂Ek

∂t

〉
= − lim

ω→∞
P (ω, t) = Π(t). (2.16)

2.1.2. Spectra vs. spectral fluxes

Having self-similar dependencies for solutions (2.5) and fluxes (2.13)–(2.15), we can
easily construct time-independent quantities which are direct analogues of the classic
Kolmogorov constants (Zakharov 1966, 1999). In terms of frequency spectra, it takes
time-independent ratios

C(βτ )
q (ξ ) = lim

t→∞

E(ω, θ, t)ω11/3g4/3

Q(ω, t)1/3
=

Φβτ
(ξ )|ξ |11/3

Q̃(ξ )1/3
, (2.17a)

C(βτ )
p (ξ ) = lim

t→∞

E(ω, θ, t)ω4g4/3

P (ω, t)1/3
=

Φβτ
(ξ )|ξ |4

|P̃ (ξ )|1/3
, (2.17b)

C(βτ )
m (ξ ) = lim

t→∞

E(ω, θ, t)ω13/3g4/3

K(ω, t)1/3
=

Φβτ
(ξ )ξ 25/6

|K̃(ξ )|1/3
. (2.17c)

Values Cq(ξ ), Cp(ξ ), Cm(ξ ) are direct generalizations of the Kolmogorov constants
(Zakharov & Zaslavsky 1982; Zakharov et al. 1992). They depend on the self-
similarity argument ξ which is proportional to non-dimensional wavenumber, and
on the self-similarity index rτ (or βτ ). Thus, self-similar solutions (2.5) can be re-
written in time-independent form in terms of the Kolmogorov relations (2.17). Such
reformulation looks speculative as long as the properties of functions of self-similar
variable ξ in (2.17) are not specified. It has been shown in numerical studies (Badulin
et al. 2005b) that spectral shapes Φβτ

(ξ ) and self-similar shapes of spectral fluxes

Q̃(ξ ), P̃ (ξ ), K̃(ξ ) manifest certain properties of quasi-universality, i.e. they depend
slightly on the self-similarity index rτ (or βτ ).

Figure 1 shows solutions of the Hasselmann equation, compensated spectra, wave
action flux and the corresponding KZ function Cq plotted vs. the self-similar variable –
non-dimensional wavenumber ξ . The plots are given for different times and thus
demonstrate the asymptotic tendency of the spectra and spectral fluxes to the self-
similar behaviour. Function Cq(ξ ) shows the most interesting feature of the behaviour:
it forms a plateau for non-dimensional wavenumbers |k/kp| > 2.5 (ω/ωp � 1.5). The
ordinate of the plateau is close to the classic KZ constant of the inverse cascade
obtained numerically (Lavrenov, Resio & Zakharov 2002; Pushkarev et al. 2003) and
analytically (Geogjaev & Zakharov 2007). It should be stressed that the asymptotic
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Figure 1. (a) Down-wind solution N (k), (b) compensated frequency spectra of energy
E(ω)ω11/3, (c) wave action flux Q and (d) the resulting estimate of the Kolmogorov
ratio Cq for solutions of the Hasselmann equation (1.3) at different times. Wave input by

Hsiao & Shemdin (1983), wind speed 10 m s−1, time of 4 (dotted), 8 (dash-dot), 16 (dashed),
32 h (solid line).

ratios of spectra and spectral fluxes (2.17) depend very slightly on wind input: different
parameterizations of wind input were used by Badulin et al. (2005b) to show validity
of the asymptotic interrelation of wave spectra and spectral fluxes. For energy spectra,
it takes the following form

lim
t→∞

E(ω, θ, t)ω4

g2
= C(βτ )

p (ω/ωp, θ) lim
t→∞

(
|P (ω, t)|

g2

)1/3

. (2.18)
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Self-similarity of solutions (2.5) allows a number of different expressions for the
relation of wave spectra to spectral fluxes, the most handy one can be proposed
in terms of total energy ε and total wave input Π(t) or total energy income ∂ε/∂t

(see (2.18)). In non-dimensional form, the limit of (2.18) at ω → ∞ gives

ε̃ω̃4
∗ = α(d)

ss (ω̃3
∗Π̃(τ ))1/3 (2.19)

or with (2.1)

ε̃ω̃4
∗ = α(d)

ss

(
ω̃3

∗
∂ε̃

∂τ

)1/3

. (2.20)

We use superscript (d) to stress that the dependence is derived for the particular case
of duration-limited growth. For dimensional total energy and total wave input we
obtain

εω4
∗

g2
= α(d)

ss

(
ω3

∗Π(t)

g2

)1/3

= α(d)
ss

(
∂ε

∂t

ω3
∗

g2

)1/3

. (2.21)

Relationships (2.19)–(2.21) are fairly consistent with the split balance model, i.e. they
operate with the same physical properties: characteristic frequency ω∗ as a scale of
conservative kinetic equation (1.1) and total wave input as a scale of the closure
(boundary) condition (2.1), (2.16).

For total energy of self-similar solutions (2.5), we have

ε̃ =

∫
Ω̃(κ)ñ(κ) dκ = a9/19

τ τ pτ Aβτ
, Aβτ

=

∫
|ξ |1/2Φβτ

(ξ ) dξ . (2.22)

Characteristic frequency ω̃∗ in (2.21) can be given as a mean over the spectrum

ω̃m =

∫
Ω̃(κ)ε̃(κ) dκ

ε̃
= a−2/19

τ τ−qτ Bβτ
, Bβτ

=

∫
|ξ |Φβτ

(ξ ) dξ∫
|ξ |1/2Φβτ

(ξ ) dξ

, (2.23)

or assuming
max(Φβτ

) = Φβτ
(1) (2.24)

as spectral peak frequency
ω̃p = a−2/19

τ τ−qτ . (2.25)

From (2.14) for total input we have

Π̃ (τ ) = a9/19
τ τ spCβτ

, Cβτ
=

∫ π ∞

−π 0

(
βτ |ξ |5/2 ∂Φβτ

∂ |ξ | + ατ |ξ |3/2Φβτ

)
d|ξ | dθ. (2.26)

The self-similarity parameter αss takes the following form (see (2.19))

α(d)
ss =

Aβτ
B3

βτ

C
1/3
βτ

. (2.27)

Accepting spectral peak frequency ωp as a characteristic one and using (2.20), we
have a simpler expression

α(d)
ss =

A
2/3
βτ

p
1/3
τ

. (2.28)

In the case of (2.28), the self-similarity parameter α(d)
ss depends explicitly on

energy growth rate pτ and on Aβτ
. An important feature of wave spectra – their
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quasi-universality allows us to make analysis of the wave growth law (2.21) more
transparent: it turns out that Aβτ

depends weakly on self-similarity index pτ . We
consider this point in presentation of numerical results.

2.2. Fetch-limited self-similar solutions

The case of fetch-limited growth (stationary, non-homogeneous Hasselmann’s
equation) can be analysed in a similar way (see for details Badulin et al. 2005b;
Zakharov 2005b).

Consider an idealized problem of fetch-limited growth when constant offshore wind
is perpendicular to the straight coast line and wind wave spectra depend on the only
spatial coordinate x. Introducing non-dimensional fetch (see (2.3))

χ = k0x.

look for self-similar solutions in the following form (cf. (2.5))

ñ(k, x) = aχχαχ Φβχ
(ζ, θ), ζ = a1/5

χ κχβχ , ζ = |ζ |, θ = arctan(ζx/ζy). (2.29)

The ‘shape’ function Φβχ
is determined by the integro-differential equation

cos θ

2
√

ζ

[
αχΦβχ

+ βχζ
∂Φβχ

∂ζ

]
= 16π2

∫
|T̃ζ ζ1ζ2ζ3,θ θ1θ2θ3

|2ζ1ζ2ζ3dζ1dζ2dζ3dθ1dθ2dθ3δ(ζ cos θ + ζ1 cos θ1

− ζ2 cos θ2 − ζ3 cos θ3)δ(ζ sin θ + ζ1 sin θ1 − ζ2 sin θ2 − ζ3 sin θ3)

× δ(
√

ζ +
√

ζ 1 −
√

ζ 2 −
√

ζ 3)
[
Φβχ

(ζ1, θ1) Φβχ
(ζ2, θ2) Φβχ

(ζ3, θ3)

+ Φβχ
(ζ, θ) Φβχ

(ζ2, θ2) Φβχ
(ζ3, θ3) − Φβχ

(ζ, θ) Φβχ
(ζ1, θ1)Φβχ

(ζ2, θ2)

− Φβχ
(ζ, θ) Φβχ

(ζ1, θ1) Φβχ
(ζ3, θ3)

]
. (2.30)

The condition of balance of total wave action

〈∇kωk∇rNk〉 = 〈Sin + Sdiss〉 (2.31)

is consistent with solution (2.29) when the total wave action is a power function of
fetch ∫

ñ(κ, χ) dk = a3/5
χ χrχ

∫
Φβχ

(ζ ) dζ . (2.32)

Total energy obeys conditions of

ε̃ =

∫
Ω̃(k)ñ(κ, χ) dκ = a1/2

χ Aβχ
χpχ , Aβχ

=

∫
|ζ |1/2Φβχ

(ζ ) dζ , (2.33)

and for mean frequency we obtain

ω̃m =

∫
Ω̃(κ)ε̃(κ) dκ

ε̃
= a−1/10

χ Bβχ
χ−qχ , Bβχ

=

∫
|ζ |Φβχ

(ζ ) dζ∫
|ζ |1/2Φβχ

(ζ ) dζ

. (2.34)

Accepting

max(Φβχ
) = Φβχ

(1), (2.35)
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we have for peak frequency

ω̃p = a−1/10
χ χ−qχ . (2.36)

The set of exponents obeys slightly different (if compared to the duration-limited
case) relations between exponents αχ and βχ

αχ = 5βχ − 1/2, rχ = (3αχ − 1)/5. (2.37)

Linear relationship between wave growth pχ and downshift exponents qχ differs
slightly from (2.10) for the duration-limited case

pχ =
10qχ − 1

2
. (2.38)

For total energy and momentum exponents, we have (cf. (2.9a,b))

Etot ∼ χpχ , pχ = αχ − 5βχ/2 = (10rχ − 1)/12, (2.39a)

Mtot ∼ χmχ , mχ = αχ − 3βχ = (4rχ − 1)/6. (2.39b)

The restriction on the exponents to provide a dominance of nonlinear transfer if
compared with wave input and dissipation at infinitely long fetches gives (cf. (2.12))

αχ > 1, rτ > 2/5, pτ > 1/4, qτ > 3/20, mτ > 1/10. (2.40)

Even though the relationships for exponents of wave growth in duration-limited and
fetch-limited cases (2.8), (2.7), (2.37), (2.38) are different, these exponents express the
basic feature of the self-similar development: rigid link between wave spectra and
spectral fluxes. The corresponding formulae can be easily derived as in previous
sections. In terms of total energy and total flux at infinitely high frequencies, we have

ε̃ω̃4
∗ = α(ff )

ss (ω̃3
∗Π̃(χ))1/3. (2.41)

Having no arguments similar to those presented in figure 1 for duration-limited
development, we cannot vouch for the equivalence of the self-similarity parameter
α(ff )

ss in (2.41) and α(d)
ss in (2.19), (2.21). Moreover, turning to an ‘observable’ quantity –

total wave input, we have to relate the total flux Π(χ) to convective derivative
〈∇kωk∇rNk〉 in (2.1), and hence to spatial derivative of total energy ∂ε/∂x and a
characteristic group velocity. Finally, accepting the energy-input relation in a form
similar to the duration-limited case, we obtain

ε̃ω̃4
∗ = α(f )

ss

(
ω̃2

∗
2

∂ε̃

∂χ

)1/3

(2.42)

or in dimensional form

εω4
∗

g2
= α(f )

ss

(
ω2

∗
2g

∂ε

∂x

)1/3

. (2.43)

For peak frequency scaling (2.35), we have a simple formula for α(f )
ss (cf. (2.28))

α(f )
ss =

A
2/3
βχ

p
1/3
χ

. (2.44)

Formally, within our analysis of self-similar solutions, we have

α(d ) 	= α(ff ) 	= α(f ).
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Parameters α(d)
ss and α(ff )

ss are likely to be identical if we extend the particular spectrum-
flux relations (2.19), (2.41) to the general case

ε̃ω̃4
∗ = αss (ω̃

3
∗Π̃ (τ, χ))1/3 = αss

(
ω̃3

∗
dε̃(τ, χ)

dτ

)1/3

. (2.45)

At the same time, we should be careful when relating α(ff )
ss and α(f )

ss because of the
scaling of the convective derivative in (2.31) by the characteristic group velocity. Using
self-similar scaling arguments only, we have

〈∇kωk∇rEk〉 ∼ ω∗ε

2g
. (2.46)

A similar trick is widely used in experimental studies when trying to treat one-
point measurements as fetch-limited ones by means of time-to-space conversion and
introducing a characteristic transport velocity (e.g. Hwang & Wang 2004). Here, we
are aware of possible issues when using the group velocity to convert a duration-
limited set-up to fetch-limited. Further, unless otherwise stated, we use notation αss

irrespective the wave development set-up.

2.3. Self-similar solutions and experimental parameterizations of wind-wave spectra

Consistent use of the self-similarity analysis implies a presentation of results in terms
of a minimal (and, at the same time, sufficient) number of non-dimensional physically
relevant variables. In our case, it means the possibility of presenting solutions ((2.5),
(2.29)) as time- (fetch-) independent. After trivial algebra, we come to a universal
(valid for time- and fetch-duration set-ups) form of these solutions

ε(ω, θ)ω5
∗

g2
= αss

(
ω3

∗ dε/dt

g2

)1/3

Φβ(ω/ω∗, θ). (2.47)

Here, proper normalization is imposed for the shape function Φβ(ω/ω∗, θ) in order
to satisfy wave growth relations ((2.20), (2.42)). Full derivative dε/dt and omission of
scripts τ, χ are used to emphasize universality of this relation.

The found time-free (fetch-free) form of asymptotic self-similar solutions contains
all the physical scalings of the split balance model ((1.2), (2.1)), i.e. can be considered
as both physically and mathematically correct. Solution (1.9) is a direct analogue of
weakly turbulent relations between spectral magnitudes and spectral fluxes represented
by the Kolmogorov–Zakharov solutions (Zakharov & Filonenko 1966; Zakharov &
Zaslavsky 1982), and parameter αss is a counterpart of Kolmogorov’s constants
(Badulin et al. (2005a)

The self-similarity parameter αss and shape function Φβ depend on growth rates
(pτ (χ) or qτ (χ)) as we see in (2.28), (2.43), but this dependence is quite weak. The latter
feature – quasi-universality of spectral shapes is illustrated by the results of numerical
solutions (figures 2 and 3) of the Hasselmann equation (1.3) in the duration-limited
case for different wave inputs (Stewart 1974; Snyder et al. 1981; Plant 1982; Hsiao &
Shemdin 1983; Donelan & Pierson 1987). Corresponding growth exponents pτ vary
in the wide range of 0.67 <pτ < 0.84 (cf. (1.7)). Moreover, the scaling parameter aτ

responsible for spectra magnitudes (2.5) varies by 6 orders. Nevertheless, solutions
keep to self-similar scaling (2.7) quite well.

Solutions (2.47) represent a typical second type (incomplete) self-similarity, when
shape function Φβ expresses a non-trivial dependence on an ‘internal’ variable –
non-dimensional frequency, while ‘outer’ dependence is a ‘simple’ power-law function
of non-dimensional wave input.
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It should be stressed that experimental parameterizations of wave spectra follow
the same idea of incomplete self-similarity. A detailed discussion of this issue can
be found in the JONSWAP report (Hasselmann et al. 1973): the original idea of
similarity proposed by Kitaigorodskii (1962, 1983) was gradually converted into the
idea of self-similarity of wind-wave spectra (see also Toba 1973a , b). In accordance
with this idea, all the conventional parameterizations of wind-wave spectra postulate
the self-similarity in the form of incomplete or second-type self-similarity

ε(ω, θ)ω5
p

g2
= αexp(Cp/Uh)

καΦexp(ω/ωp, θ, γ, σa, σb, . . . ), (2.48)

with the corresponding duration- (fetch-) independent relationship for total energy

εω4
p

g2
= αexp(γ, σa, σb, . . . )(Cp/Uh)

κα . (2.49)

Additional parameters of the spectral shape Φ (in the JONSWAP model: spectrum
enhancement γ , peak width parameters σa(b)) are widely used by experimentalists
(e.g. Babanin & Soloviev 1998a) as tuning parameters. A unique choice of these
parameters in (2.48) requires additional criteria when working with experimental data
(excluding the basic one αexp which is determined by total energy).

The most striking difference between theoretical parameterization (2.47) and its
experimental counterpart (2.48) is in their outer scaling: the first one is scaled by
non-dimensional wave input in full agreement with the split balance model (1.2), (2.1),
while experimental form (2.48) uses traditional wave age scaling (1.6) introduced by
Kitaigorodskii (1962).

The description of wave growth within the split balance model is complete as
far as the total wave input is known. Adequate use of experimental wind speed
scaling in (2.48) implies use of a model of wind-sea interaction necessary to convert
characteristics of atmosphere into wave input quantities. In the absence of such a
model, the self-similar parameterization can be considered as a simple fitting formula,
but not as a physically relevant expression. This note is important in view of further
attempts to propose a universal parameterization of wave growth dependencies in
terms of wind speed (e.g. Wen et al. 1989, 1993; Goda 2003; Donelan et al. 1993).
Using the words of Donelan et al. (1992) cited above we may say again:

‘Perhaps it is time to abandon the idea that a universal law of wave growth in terms of wind speed scaling

is anything more than an idealization’.

The rigid weakly turbulent link of wave energy and total wave input (2.45) gives
us a new understanding of the universality – the universal wave growth law (1.9).
Building a bridge between experimental and theoretical approaches to the problem
of wind-wave growth, we should realize, however, a conceptual difference of the two
approaches.

Traditionally, the experimental search for wind-wave growth dependencies (1.4),
(1.5) was undertaken for ‘correct’ values of exponents pχ and qχ (pτ and qτ ) and
corresponding pre-exponents of wave growth. Variations of pτ (χ) and qτ (χ) between
the experiments were interpreted as an annoying feature which is due to either
imperfect experiments (measurement limitations, natural data scatter, limited range
of data and wind-wave conditions etc.) or deviations of the wave circumstances from
so-called ‘ideal conditions’ of wave generation, development and propagation (see e.g.
Kahma 1981). Many factors could contribute to the conditions of sea experiments
not being a perfect fit to the idealized cases of duration- and fetch-limited growth.
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For example, gustiness of the wind which is its inherent feature can lead to some
30–40% increase of the wave height (Abdalla & Cavaleri 2002). Non-stationarity of
the wind speed (increasing or decreasing wind), temperature stratification, presence of
swell, modulation of the wind stress by passing wave groups, or due to longer waves,
or because of fine-scale inhomogeneity of wave skewness and asymmetry can all
affect the wave growth rate, sometimes by a factor of 2–3 (e.g. Donelan et al. 2006).
Many, if not most of these effects are usually present during field observations, but
are routinely disregarded in experimental dependencies (1.4) and (1.5). All these and
other effects are the ‘details’ of wind-wave interaction that should be incorporated
into a corresponding physical model.

The proposed theoretical ‘flux scaling’ should be able to account (maybe somewhat
indirectly) for all the ‘imperfect’ details of wind-wave growth. Deviations from the
theoretical law (1.9), (2.47) can still be expected, for two reasons. (i) The asymptotic
nature of the law: early stages of wave development do not obey the law. (ii) We have
no reason to disregard a composite nature of the wave field owing to the broad range
of wave scales: some parts of wave spectra can approach an asymptotic state and
others cannot. The latter, in particular, can make our results somewhat sensitive to
the choice, say, of characteristic frequency ω∗. Evidently, the frequency scaling should
reflect the evolution of a ‘weakly turbulent core’ of wave field rather than the mean
over all the scales: in the sense that peak frequency scaling looks more attractive if
compared with a mean frequency one.

3. Duration-limited growth in numerical simulations
To check the validity of the weakly turbulent laws (1.9), we start with the duration-

limited case. This case is extremely ‘inconvenient’ for field studies and the list of
representative experiments is short. This will be compensated by results of an extensive
numerical study (Badulin et al. 2005b). Experimental results on duration-limited
growth will be discussed in a separate paper. Time series of the numerical experiments
allow us to validate the weakly turbulent dependencies, first of all, in terms of
relationships for self-similar solutions (2.10), (1.9) by simple fitting of the series with
power-law dependencies as for (1.4). This somewhat restrictive approach can be
avoided as far as we appreciate the fact of a weakly turbulent relationship between
energy and flux (1.9) which does not imply any power-law dependence, but a tendency
of wave spectra to an asymptotic behaviour controlled mostly by nonlinear transfer.
We present this way of analysis as the energy-flux diagram method.

The key property of the split balance model – independence of the wave growth on
details of wave input function – (Pushkarev et al. 2003; Badulin et al. 2005b) allows us
to reproduce the self-similar power-law wave growth in the best way by using artificial
source function Sf . Solutions with conventional input functions (Stewart 1974; Snyder
et al. 1981; Plant 1982; Hsiao & Shemdin 1983; Donelan & Pierson 1987) allow us to
quantify the departure from particular self-similar regimes and to make conclusions
on the validity of weakly turbulent wave growth laws in the general case. The validity
check for self-similar solutions consists of two parts. First of all, we check the link
of exponents of total energy growth pτ and of characteristic frequency downshift
qτ (2.10) following recent analysis of the fetch-limited growth (Zakharov 2005b).
Secondly, we estimate the self-similarity parameter αss for different sets of pτ , qτ .

3.1. Exponents of duration-limited growth. Wave frequency scaling

The split balance model gives a family of solutions that depend on the self-similarity
index pτ . Exponents of total energy growth pτ in numerical (Badulin et al. 2005b) and
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Figure 4. (a) Exponents pτ and qτ for power-law approximations of total energy and mean
frequency of the kinetic equation solutions. (b) Exponents pexp and qexp derived from exponents
of spectral peak growth ατ and βτ (see (2.7), (2.10)). �, runs with isotropic artificial increment
(3.1); 
, runs with anisotropic artificial increment (3.1); �, wave input given by conventional
formulae (Stewart 1974; Snyder et al. 1981; Plant 1982; Hsiao & Shemdin 1983; Donelan &
Pierson 1987). Sets of exponents for constant total wave action (3/11, 8/11) and total wave
energy (1/3, 1) fluxes are given by stars. The solid line shows the theoretical dependence of pτ

on qτ , the dashed line corresponds to Toba’s 3/2 law.

in sea experiments vary in a relatively narrow range (e.g. (1.7) for the fetch-limited
case). Using the special set-up of numerical runs, we can try to cover an essentially
broader range of the self-similarity index. It helps to detail important features of
the problem discussed. In (Badulin et al. 2005b) such a set-up was presented as an
‘academic’ one.

The idea of this set-up naturally comes from the split balance model: since the
wave development is determined primarily by total input (see (2.1)), we can put the
wave input in a narrow high-frequency domain to free maximal space for inverse
weakly turbulent cascading and the resulting self-similar solution. It is likely that
self-similarity features will be better observable in this case.

The input is assumed to be linear in wave action (wave energy) with a time-
dependent increment. Total energy grows as follows:

dε

dt
∼

∫ 2π

0

∫ ωh

ωl

tpinc−1ε(ω, θ) dωθ, (3.1)

where (pinc − 1) is the exponent of the wave energy increment. Note that exponent
pinc is not equal to the resulting exponent of total energy growth pτ owing to the
dependence of ε(ω, θ) on time in the domain of wave input ωl < ω < ωh.

In numerical runs with conventional formulae (Stewart 1974; Snyder et al. 1981;
Plant 1982; Hsiao & Shemdin 1983; Donelan & Pierson 1987) wind input is distributed
in a wide frequency domain and does not depend on time explicitly. In this case, total
input depends on time owing to the interplay of spectral growth and downshift when
the spectral peak moves to a range of lower wave increments. Generally, it leads to
the total wave input decaying slightly with time. Accordingly, pτ appears to be less
than 1.

Figure 4 and table 1 show the dependence of the exponent of energy growth pτ on
qτ . Numerical runs with artificial increments (3.1) give pτ , qτ varying in wide ranges

0.191 � pτ � 1.754, 0.170 � qτ � 0.470, (3.2)



356 S. I. Badulin, A. V. Babanin, V. E. Zakharov and D. Resio

Run qτ pτ zτ ε0 ω0 α(1)
ss α(2)

ss

ac 7/22 0.170 0.191 −0.049 1.534 × 10−1 4.559 2.245 1.232
ac 5/11 0.181 0.303 −0.008 4.606 × 10−2 5.203 1.283 1.086
ac 8/11 0.254 0.713 −0.047 4.106 × 10−4 12.91 0.633 1.058
ac 19/22 0.289 0.924 −0.082 3.695 × 10−5 19.72 0.416 1.038
ac 1 0.343 1.138 −0.063 3.282 × 10−6 36.73 0.499 0.995
ac 47/44 0.355 1.169 0.048 8.647 × 10−8 82.52 0.487 0.883
ac 25/22 0.366 1.256 0.073 1.164 × 10−8 116.7 0.361 0.841
ac 17/11 0.470 1.754 0.093 1.649 × 10−10 294.2 0.302 0.886
Snyder et al. 10 m s−1 0.247 0.669 0.038 6.740 × 10−4 10.94 0.548 0.843
Snyder et al. 20 m s−1 0.300 0.835 −0.010 1.772 × 10−3 10.84 0.944 0.858
Donelan 10 m s−1 0.243 0.694 0.067 5.848 × 10−4 10.36 0.418 0.841
Hsiao & Shemdin 10 m s−1 0.247 0.685 −0.049 1.694 × 10−4 14.50 0.504 0.878
Hsiao & Shemdin 20 m s−1 0.251 0.699 −0.046 2.303 × 10−3 8.261 0.528 0.863
Hsiao & Shemdin 30 m s−1 0.263 0.734 −0.034 7.799 × 10−3 6.635 0.607 0.855
Stewart 10 m s−1 0.281 0.759 −0.004 9.877 × 10−5 19.58 0.838 0.794

Table 1. Exponents and pre-exponents (dimensional) of wind-wave growth and self-similarity
parameter αss for numerical runs. The spectral peak frequency was used for scaling the
self-similarity law (1.9). q (1) is the exponent of power-like approximation (1.4), q (2) is estimated
from theoretical relation (2.10). Two different estimates of αss are given in accordance with
formulae (3.4), (3.6)). Series ‘ac’ are for artificial wave pumping exponents pinc (3.1). Type of
wave input parameterization and wind speed are shown for ‘realistic’ cases.

while for conventional wave input functions (Stewart 1974; Snyder et al. 1981; Plant
1982; Hsiao & Shemdin 1983; Donelan & Pierson 1987) this range is essentially
narrower

0.669 � pτ � 0.835, 0.243 � qτ � 0.300. (3.3)

The case of swell (wave action Ntot =const) represents a special case of a self-similar
solution.

First, pτ , qτ were estimated for total energy and mean-over-spectrum frequency
ωm (figure 4a). Generally, all the numerical points are slightly above the theoretical
straight line (solid line in figure 4) both for conventional and artificial wave inputs.
Moreover, for ‘realistic’ runs the points appear to be remarkably close to the Toba 3/2
law. The departure from the theoretical dependence can be explained easily if we take
into account the asymptotic nature of the wave growth and the composite nature of
the wave spectrum: different parts of the wave spectrum attain its self-similar regimes
over different times or do not attain these regimes at all because of the different
composition of wave input and nonlinear transfer. Thus, the resulting exponents
pτ , qτ characterize both a self-similar ‘core’ and a non-self-similar ‘background’ (see
§ 6.2.3 in Badulin et al. 2005b).

An alternative estimate of exponents pτ , qτ was targeted specifically to trace
evolution of the self-similar ‘core’ of wave spectra. Exponent qτ was estimated as
qτ = βτ/2 (see (2.5)) by tracing the wave action peak frequency, and pτ was found
in a similar way from exponent ατ of wave action magnitude growth (2.8). The new
estimates of pτ , qτ collapse to the theoretical dependence fairly well (figure 4b).

Strong scatter of data points (figure 4a, especially for pτ > 1) for the case of artificial
wave input, with respect to the theoretical line, shows a strong effect that the non-self-
similar background of wave spectra has on exponents pτ , qτ . This cannot be avoided
by special set-ups of numerical experiments. An adequate scaling of wave spectra
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growth allows us to reveal self-similarity features of wave development: the spectral
peak frequency, evidently, characterizes the self-similar core of wave spectra better
than the mean frequency. This conclusion is valid for treatment of experimental results
also: specific methods of measurement can emphasize spectral peak characteristics
or, on the contrary, rely on the mean (integral) features. Thus, observations should
be related very carefully to the theoretical predictions.

The numerical study allowed us to inspect a large domain of parameters where
self-similar solutions are formally valid, i.e. pτ > 4/19, qτ > 3/19 (see (2.12) and § 5.2,
equation 93 in Badulin et al. 2005b). The swell case was analysed as a specific case
of ‘pure nonlinearity’. For conventional parameterizations of wind input and in the
field experiments, exponent pτ varies in a narrow range (compare (3.2), (3.3)). This
in fact implies a significant scatter if a wave growth prediction is based on such
dependencies for typical durations of a few hours. As mentioned above, for over 50
years the experimentalists have been struggling to reconcile the differences into a single
purified universal dependence (see e.g. Wen et al. 1989; Kahma & Calkoen 1992).
Now, based on our theory, it appears that the range of 0.6 � pτ � 1 is not necessarily
the experimental ‘scatter’, but is a natural subset of wave growth conditions allowed
by the weakly turbulent self-similar development. More than that, the allowed range
is much broader (i.e. pτ > 4/19 and an upper limit is determined by physically relevant
magnitudes of wave growth only). Why has this broader range not been observed in
the measurements? It is not because the slow growth of wave energy is ‘prohibited’ in
nature. Very likely, it is either due to difficulties of observations of the corresponding
stages of wave development or due to intentional filtering out the odd points by
the experimentalists in their search for ‘ideal’ conditions of wave growth. Indeed, the
extreme case of pτ = 4/19, for example, would correspond to the total wave energy
input decaying as ∼ t−15/19 (see (2.10)). This would happen, for instance, if the wind
was decreasing. Cases of the decreasing wind, however, were found to be significantly
scattered with respect to the ‘ideal’ wave growth dependencies (Kahma & Calkoen
1992) and have been routinely discarded by the experimentalists as not suitable for
such dependencies.

3.2. Method of energy-flux diagrams

The theoretical relationship for total energy and net wave input (2.21) being rewritten
for power-law dependencies (1.4) gives a simple expression for αss in terms of
dimensional pre-exponents ω0, ε0

α(1)
ss =

(
ε2

0ω
9
0

pτg4

)1/3

t zτ (3.4)

where

zτ =
2pτ − 9qτ + 1

3
. (3.5)

Superscript ‘(1)’ for αss is introduced for the particular case of power-law dependencies
(1.4). Having independent estimates of exponents pτ , qτ , we generally have a
dependence of α(1)

ss on time. When exponents pτ and qτ satisfy the theoretical
relationship (2.10), exponent zτ vanishes and α(1)

ss becomes time-independent. Thus, a
consistent estimate of self-similarity parameter α(1)

ss can be obtained by assuming one
of the exponents of the wave growth ‘more reliable’ and using the theoretical relation
to determine the other one. We shall refer to pτ as a reference one unless otherwise
stated. In fact, the departure of exponents from theoretical dependence is relatively



358 S. I. Badulin, A. V. Babanin, V. E. Zakharov and D. Resio

0 0.01 0.02

0.01

0.02

0.03

0.04(a) (b)
7/22
5/11
8/11
19/22
1
47/44
25/22
17/11

0 0.01 0.02

0.005

0.010

0.015

ε 
ω

4 m
/g

2

ε 
ω

4 m
/g

2

(dε/dt ω3
p/g2)1/3(dε/dt ω3

m/g2)1/3

Figure 5. Energy-flux dependencies for different exponents of wave growth pτ with artificial
pumping (3.1) (pinc are shown in the key). (a) Mean frequency is used for scaling, (b) peak
frequency scales wave energy and wave energy flux. The tendency to the self-similarity law
is seen much better in the latter case. Weak oscillations of trajectories at the bottom of the
graphs are due to interpolation from the numerical grid. Trajectories are given for t > 1800 s.

small in our case: high power of ω0 in (3.4) can affect the resulting estimates more
strongly. A more general expression that does not imply power-law dependence of
energy and characteristic frequency on time can be proposed in the following form
(2.18),

α(2)
ss = lim

t→∞

εω3
∗

(g4 dε/dt)1/3
. (3.6)

Evidently, estimate (3.4), which contains an explicit dependence on time, implies
additional error sources due to interpolation procedures, choice of initial time etc.
Definition (3.6) looks more attractive and physically transparent as far as it is just a
tangent of the plot of non-dimensional wave energy versus non-dimensional total wave
input (1.9). Existence of the finite limit of α(2)

ss can be considered as an independent
argument for the validity of the split balance model and, hence, for the leading role of
nonlinear transfer in wave spectra. It is useful to conduct a corresponding asymptotic
analysis in terms of energy-flux diagrams

Figure 5 shows energy-flux dependencies for a series of numerical runs with artificial
wave pumping (3.1). Wave input indexes pinc (see (3.1)) are shown in the key. Mean
frequency ωm is used for scaling in figure 5(a) and the peak frequency ωp in figure 5(b).
The solutions evolve towards the coordinate origin with time. Trajectories show a
clear tendency to linear dependence in both parts of figure 5 as is predicted by the
weakly turbulent law (1.9). For mean frequency scaling (figure 5a), this tendency
is slower and not so pronounced for pinc > 1. Peak frequency scaling (figure 5b)
supports the asymptotic law (1.9) more definitely. Note our ‘half-and-half solution’
of the scaling problem: we used peak frequency, but total, not peak (or ‘self-similar
core’) magnitude of wave energy. It gives more regular dependencies for a rather poor
numerical grid. In sea experiments, we have the same problem of observability and
accuracy of different characteristics of wave field.

Figure 6 presents the energy-flux diagrams for different conventional para-
meterizations of wave input (Stewart 1974; Snyder et al. 1981; Plant 1982; Hsiao &
Shemdin 1983; Donelan & Pierson 1987) for wind speeds 10 − 30 m s−1. The same
tendency to weakly turbulent energy-flux relationship (1.9) is seen remarkably well
for both frequency scalings (mean frequency – figure 6a, peak frequency – figure 6b).
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Figure 6. Energy-flux dependencies in ‘real’ numerical experiments for different para-
meterizations of wave input. (a) Mean frequency is used for scaling, (b) peak frequency scales
wave energy and wave flux. Tendency to the self-similarity law is seen better for stronger winds
and ‘more aggressive’ wave input functions (Snyder et al. 1981; Donelan & Pierson 1987).
Trajectories are given for t > 1800 s.

As was expected, the asymptotic slope αss appeared to be very close for all the num-
erical experiments presented in figure 6 owing to the relatively low variability
of exponent pτ .

The attainability of the self-similar law (1.9) depends on total energy flux magnitude:
for higher winds and stronger inputs (Snyder et al. 1981; Donelan & Pierson 1987) it
is essentially faster than for winds of 10 m s−1 and moderate wave increments (Stewart
1974; Hsiao & Shemdin 1983). We see again an illustration of the ‘magic circle’ effect:
the weakly turbulent scenario works better when the wave input is stronger, the strong
wave input provides a stronger self-similar core of wave spectra. The peak frequency
scaling does not remove completely the effect of a non-self-similar background, but
it reduces scatter of curves dramatically when compared with the mean frequency
scaling.

As far as dissimilarity of artificial and ‘realistic’ runs is concerned, there is no
essential difference in their tendency to the asymptotic behaviour. A special set-up of
a numerical run can shorten, in some cases, time of relaxation to the asymptotic state
due both to relatively small non-self-similar fraction of the resulting solution and to
a generally higher (sometimes, intentionally too high) increment of wave growth.

3.3. Self-similarity parameter αss and pre-exponents of wind-wave growth

Table 1 summarizes results of the verification of the self-similarity law (1.9) for the
duration-limited case. The downshift exponent qτ was calculated from time evolution
of the spectral peak, linear interpolation was used because of relatively poor frequency
grid (71 points in the range 0.02 − 2 Hz) and slowness of downshift itself. Energy
exponent pτ is defined for total energy and, thus, cumulates evolution of self-similar
core and non-self-similar background. Exponent zτ (see (3.5)) represents deviation of
pτ , qτ from the theoretical relationship (2.10). Pre-exponents ε0, ω0 in (3.4) are given
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Figure 7. Self-similarity parameter αss for numerical solutions for duration-limited case.
Circles, artificial pumping; triangles, conventional parameterizations of wave input at different
wind speeds. (a) Mean frequency ωm is used as a characteristic frequency in (1.9), (b) peak
frequency ωp scaling. Filled symbols correspond to estimates (3.6), open symbols to (3.4).

dimensional to avoid the problem of traditional wind speed scaling for artificial wave
input (3.1).

Two last columns in table 1 give different estimates of self-similarity parameter αss

by (3.4) and (3.6). These estimates are given in figure 7 for different frequency scalings
((a) mean frequency; (b) peak frequency). Peak frequency scaling and asymptotic
estimate ((3.6), filled symbols in figure 7b) show more consistent results: we can see a
gradual decay of αss with growing pτ and essentially weaker dispersion if compared
with estimate (3.4).

Estimate (3.4) is less reliable for two reasons. (i) The power-law fit is valid for large
(formally infinite) times when approaching a self-similar regime. (ii) The initial time t0
is not known for the asymptotic solutions: evidently, this time depends on the initial
wave spectra, source function Sf etc.

Dependence αss (pτ ) requires more comments in view of the above discussion on
quasi-universality of wave spectra in §§ 2.1.2 and 2.3 (figures 2 and 3). Irrespective of
the frequency scaling and definitions (3.4), (3.6) this dependence follows law p−1/3

τ for
pτ > 0.5 quite well (see figure 8). The latter means (see (2.28)) a weak dependence
of Aβτ

, integral of energy spectral shape (2.22), on self-similarity index pτ . Above, we
presented this feature as quasi-universality of wave spectra. In figure 8, we show eye-
ball fits for both estimates of αss : αss = p−1/3

τ works well for the asymptotic formula
(3.6), whereas fit αss =0.45p−1/3

τ (3.6) approximates the estimate (3.4) derived from
explicit time dependencies (1.4).

Slowly growing spectra (small pτ ) do not show this remarkable feature: their
deviations from simple law αss ∼ p−1/3

τ are quite large. It should be mentioned (see
discussion of validity of approximate self-similar solutions in § 2.1 and (2.12)) that
self-similarity features require high growth rates to ensure leading nonlinear transfer.
For smaller rates, both self-similarity and quasi-universality features of the numerical
solutions appear to be questionable.

4. Fetch-limited growth in field experiments
Experimental dependencies of wind-wave growth are the only background of our

study of the fetch-limited case: up to now, no numerical results are available to verify
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Figure 8. Self-similarity parameter αss for numerical solutions for duration-limited case.
Circles, artificial wave pumping (3.1); triangles, conventional parameterizations of wave input
at different wind speeds. Filled symbols correspond to estimates (3.6), open symbols to (3.4).
Solid line, eye-ball fit αss = p−1/3

τ for (3.6); dashed line, αss = 0.45p−1/3
τ for (3.4).

self-similarity relationships (2.38), (4.1) in the same spirit as the above duration-limited
case.

Over the years, a great number of field experiments have been undertaken to fit
the evolution of total wave energy (wave variance) and peak or mean frequency with
simple dependencies on non-dimensional fetch. Absolute majority of these integral
dependencies correspond, as the authors claim, to an ideal stationary case of wave-
field development in one spatial direction only, while conditions in the perpendicular
direction remain homogeneous. Strictly speaking, only a part of these experiments
can be explicitly regarded as the fetch-limited case: in some of them, the dependence
on fetch was simulated by measuring the waves at a single point. Variation of the
dimensionless fetch was often thus achieved by varying the wind speed rather than the
wave fetch. Therefore, dependencies of the wave energy and the peak frequency on
fetch are only as good as the correctness of the Kitaigorodskii (1962) scaling by the
wind speed. The Kitaigorodskii scaling, in its turn, implies a universality of wind-wave
interaction in terms of wind speed, i.e. independence of wave growth on additional
physical properties such as stability of atmospheric boundary layer, presence of wave
groups etc.

The idea of universality, broadly employed, corrupted and concealed the true
experimental wave growth dependencies. First of all, results of measurements at
different conditions are often combined to derive ‘more statistically reliable’ wave-
growth dependencies. Secondly, data are treated as fetch-limited by enforced use
of time-to-space transformation of time series measured in a single point. Finally,
essential wind-wave physics is ignored when waves in laboratory tanks and at sea
are competing on equal terms in combined data sets for describing the wave growth
dependencies.

Thus, all the characteristics of the available experimental data require a thorough
revision before we try to use them in order to verify the theoretical wave-growth law
(1.9). Here, we analysed all dependencies available to us obtained over more than
50 years, and every set went through thorough and detailed scrutiny before being
accepted or rejected for further comparisons.

Not all of the dependencies are expected to conform to the theory presented in
this paper. As detailed below, the theory is, for example, not applicable to laboratory
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conditions. Another big issue is the traditional scaling by the wind which is embedded
in all integral dependencies available at present. The wind is an irrelevant parameter
for the weak-turbulence approach, but we cannot un-scale the experimental data
and remove the wind. Rather, we have to deal with the dependencies as they are.
Therefore, we scrutinize every single experimental study and remove dependencies
where the spurious correlations due to wind scaling, inclusion of the laboratory data
or other factors may have essentially affected the growth exponents.

These and other characteristics were analysed, and records which correspond to
self-similar wave development (from the point of view of the weak turbulence) were
selected. Such records form approximately half of the total number of data sets
available. Other records are also not simply thrown away, but will always be shown
in the background.

Analysis by Zakharov (2005b) demonstrated that exponents of the fetch-limited
growth dependencies follow the self-similarity relationship (2.38) remarkably well
for six fetch-limited experiments. As mentioned above, it is not the case for the
comprehensive set of experiments presented in this paper. Moreover, for two-thirds of
the cases selected by Zakharov (2005b), a coincidence rather than a firm agreement
takes place: methods of measurements and data analysis could have corrupted the
‘true’ wave-growth dependencies in those records significantly.

At first glance, the experimental data presented as power-law approximations (1.5)
are ‘ready-to-use’ for verification of the theoretical results. First of all, the exponents
pχ, qχ are provided in explicit form and the corresponding theoretical linkage of these
exponents (2.38) can be checked trivially in the spirit of Zakharov (2005b). Secondly,
the total wave input dε/dt (the convective derivative) can be calculated analytically.
In non-dimensional variables with constant scales of energy, frequency and fetch, it
gives (compare (3.4))

α(f )
ss =

(
2ε̃2

0ω̃
10
0

pχ

)1/3

χzχ , (4.1)

where

zχ =
2pχ − 10qχ + 1

3
. (4.2)

Formula (4.1) for the self-similarity parameter αss in fetch-limited cases looks similar
to the duration-limited one (3.4) and becomes fetch-independent when the theoretical
relationship for exponents pχ, qχ is satisfied, i.e. zχ in (4.2) vanishes. It should be
stressed that, in order for (4.1) to be unambiguously obtained from the experimental
dependencies, the latter are required to be scaled by a constant value of wind speed
Uh. Instead, the crafty scaling of wave data by instantaneous wind speed or other
parameters of air–sea interaction (Davidan 1996) in the available results of field
observations hinders correct weakly turbulent wave physics and makes relationships
(2.38), (4.1)) useless or hard to employ.

Therefore, returning to the problem of inadequate scaling of wind-wave data by
wind speed, we see that dimensional raw data are more useful in our case, but,
generally, unavailable. Thus, in our analysis, we are deprived of such a vivid tool
as energy-flux diagrams used in the previous section. As an indemnity we have
one positive feature of the fetch-limited set-up (we mean, obviously, ‘true’ set-up –
fetch-limited measurements along a number of spatially distributed points): such a
set-up has a reference point – a coastline where the wind blows from. It cannot
resolve completely the problem of the correct account of the initial stage of wave
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Experiment ε̃0 × 107 pχ ω̃0 qχ zχ

1.1 Black Sea (Babanin & Soloviev 1998b) 4.41 0.89 15.14 0.275 0.010
1.2 Walsh et al. (1989) US coast 1.86 1.0 14.45 0.29 0.033
1.3 Kahma & Calkoen (1992) unstable 5.4 0.94 14.2 0.28 0.027
1.4 Kahma & Calkoen (1992) stable 9.3 0.76 12.0 0.24 0.040

2.1 Dobson et al. (1989) 12.7 0.75 10.68 0.24 0.033
2.2 Kahma & Pettersson (1994) 5.3 0.93 12.66 0.28 0.020
2.3 JONSWAP by Davidan (1980) 4.363 1.0 16.02 0.28 0.067
2.4 JONSWAP by Phillips (1977) 2.6 1.0 11.18 0.25 0.167
2.5 Kahma & Calkoen (1992) composite 5.2 0.9 13.7 0.27 0.033
2.6 Donelan et al. (1985) 8.41 0.76 11.6 0.23 0.073
2.7 CERC (1977) by Young (1999) 7.82 0.84 10.82 0.25 0.060

3.1 Wen et al. (1989) 18.9 0.7 10.4 0.233 0.023
3.2 Evans & Kibblewhite (1990) neutral 2.6 0.872 18.72 0.3 −0.085
3.3 Evans & Kibblewhite (1990) stable 5.9 0.786 16.27 0.28 −0.076
3.4 Kahma (1981, 1986) rapid growth 3.6 1.0 20 0.33 −0.100
3.5 Kahma (1986) average growth 2.0 1.0 22 0.33 −0.100
3.6 Donelan et al. (1992) St Claire 1.7 1.0 22.62 0.33 −0.100
3.7 Hwang & Wang (2004); Hwang (2006) 6.19 0.81 11.86 0.237 0.084
3.8 Ross (1978), Atlantic, stable 1.2 1.1 11.94 0.27 0.167
3.9 Liu & Ross (1980), Michigan, unstable 0.68 1.1 12.88 0.27 0.167
3.10 Liu & Ross (1980), our fit (see figure 10) 77 0.52 2.36 0.08 0.413
3.11 Davidan (1996) for u∗ scaling 794.0 1.0 9.160 0.34 −0.133

4.1 JONSWAP (Hasselmann et al. 1973) 1.6 1.0 21.99 0.33 −0.010
4.2 Mitsuyasu et al. (1971) 2.89 1.008 19.72 0.33 −0.095

Table 2. Exponents and pre-exponents of wind-wave growth in fetch-limited experiments.
Cases studied in Zakharov (2005b) are given in bold.

development, but the problem itself appears to be not so critical as in the duration-
limited case: at the initial stage, waves are relatively short and, hence, slow. Thus, the
initial stage for the fetch-limited case is relatively short if compared to the duration-
limited case. We cannot appreciate the value of this fact in its full extent: numerical
study of fetch-limited development has not been done so far and the experimental
data are too coarse to identify different stages of wind-wave development.

4.1. Experimental dependencies of fetch-limited wind-wave growth

In this paper, we analyse all available dependencies of total wave energy and wave
frequency collected in fetch-limited experiments over the past 50 years or so. As
mentioned above, these dependencies should go through a thorough revision before
they can be used for comparisons as not all of them are expected to conform with the
theory. We analyse every available experimental dependence set, show its conformance
with theoretical predictions and try to understand why, in some cases, there is no
such conformance and, in other cases, there are deviations and scatter around the
theoretical lines. All the dependencies are listed in four groups (see tables 2 and 3)
and the corresponding results are presented in different panels in figures 9 and 11.
We tried to follow formal criteria when creating these lists. Sometimes these criteria
were difficult to relate to particular experimental cases. Thus, the proposed range of
the experiments is, to some extent, arbitrary and breaks between groups are not so
strict.

The first list (group 1 in tables 2 and 3) presents the ‘cleanest’ (from the point of
view of our theory) results. Within the first group, we shall refer to the Black Sea
experiment (Efimov, Krivinski & Soloviev 1986; Babanin & Soloviev 1998b) as a
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Experiment pχ zτ αss

1.1 Black Sea (Efimov et al. 1986) 0.89 0.010 0.652
1.2 Walsh et al. (1989), US coast 1.0 0.033 0.302
1.3 Kahma & Calkoen (1992) unstable 0.94 0.027 0.591
1.4 Kahma & Calkoen (1992) stable 0.76 0.040 0.520

2.1 Dobson et al. (1989) 0.75 0.033 0.436
2.2 Kahma & Pettersson (1994) 0.93 0.02 0.400
2.3 JONSWAP by Davidan (1980) 1.0 0.067 0.751
2.4 JONSWAP by Phillips (1977) 1.0 0.167 0.160
2.5 Kahma & Calkoen (1992) composite 0.90 0.033 0.519
2.6 Donelan et al. (1985) 0.76 0.073 0.435
2.7 CERC (1977) by Young (1999) 0.84 0.060 0.318

3.1 Wen et al. (1989) 0.7 0.023 0.533
3.2 Evans & Kibblewhite (1990), neutral 0.872 −0.085 0.936
3.3 Evans & Kibblewhite (1990), stable 0.786 −0.076 1.048
3.4 Kahma (1981, 1986) rapid growth 1.0 −0.100 1.385
3.5 Kahma (1981) average growth 1.0 −0.100 1.286
3.6 Donelan et al. (1992) 1.0 −0.100 1.266
3.7 Hwang & Wang (2004), Hwang (2006) 0.81 0.084 0.373
3.8 Ross (1978), Atlantic, stable 1.1 0.167 0.116
3.9 Liu & Ross (1980), Michigan, unstable 1.1 0.167 0.102
3.10 Liu & Ross (1980), our fit (see figure 10) 0.52 0.413 0.011
3.11 Davidan (1996) for u∗ scaling 1.0 0.340 3.743

4.1 JONSWAP (Hasselmann et al. 1973) 1.0 −0.100 1.106
4.2 Mitsuyasu et al. (1971) 1.008 −0.095 1.138

Table 3. Exponent pχ of wind-wave growth and self-similarity parameter αss in fetch-limited

experiments for the observed pχ and theoretical value of qth
χ (2.38), zτ is detuning exponent in

formula for self-similarity parameter αss (4.1). Cases by Zakharov (2005b) are given in bold.

reference one, mainly, because the raw data are available for re-analysis. Also, the
Black Sea growth dependencies agree most closely with the theoretical predictions.
All other series of the group are based on measurements at a number of points: the
dependence on non-dimensional fetch was not simulated by variation of the wind
speed. Additionally, they correspond to relatively homogeneous conditions of wave
growth and measurements.

The series of the second list were obtained in fetch-limited experiments in a number
of points and, in this sense, they are similar to those of the first list. At the same time,
they may suffer some lack of accuracy in terms of our theory, first of all, owing to
composite data sets for different conditions of wave development following the idea
of an ‘ideal’ set of wave growth exponents pχ, qχ and attempting to have ‘statistically
more reliable results’. Results of this group can be used for our analysis with some
caution. As will be seen, they demonstrate a reasonably good conformance with the
theoretical predictions.

The third list is an antagonist of the first two groups: the collected dependencies
were obtained for composite data sets and used one-point measurements with further
conversion into dependencies on dimensionless fetch by varying the wind speed. These
data are not expected to conform to our theory and therefore should not be used
for comparison and verification of the dependencies for the self-similar wave growth.
Also, parameterizations where the exponents were presumed on a basis of some
grounds or considerations, and the dependencies were forced to fit these exponents,
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were placed into this group. Obviously, such presumed exponents may correspond to
the theoretically expected exponents only by coincidence.

The last group comprises of two, maybe the most respected experimental works on
wave growth by Mitsuyasu, Nakamura & Komori (1971) and Hasselmann et al. (1973).
The formal reason for their low ranking is the use of laboratory measurements. Tank
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data are embedded in these experimental dependencies where they are combined
with the field data. Laboratory waves, however, correspond to very short fetches
(a few hundred wavelengths at best) and thus cannot be directly related to the
open sea conditions as their physics is quite different. The kinetic description (the
Hasselmann equation) is not applicable to such waves, both because of the short
time of wave development and due to the quasi-unidirectional propagation where the
essentially two-dimensional four-wave resonances responsible for nonlinear transfer
can be suppressed or modified.

The dependencies from Zakharov (2005b) are given in bold in tables 2 and 3. Note,
that only two of these six dependencies fall into the ‘good lists’.

4.2. Exponents of wind-wave growth in fetch-limited experiments

As in the analysis of the duration-limited case, we follow a series of validity checks
to show conformance of experimental results to theoretical predictions. The results
of the first check, exponents of wind-wave growth, are presented in table 2 and in
figure 9. The exponents for the four groups are given in different panels in figures
and the keys correspond to the numbering in tables 2 and 3.

4.2.1. Group 1. ‘The cleanest’ dependencies

The first group (1.1–1.4 in table 2) demonstrates the best conformance with the
theoretical link of exponents pχ, qχ and a slight overestimate of exponent pχ when
compared with its theoretical values. This positive bias pχ value is reproduced in the
fetch-limited experiments of group 2 as well and in the duration-limited numerical runs
(see figure 4) and can possibly be explained by the effect of the widening of developing
wave spectra. Such widening would cause a relatively more rapid growth of the wave
variance and, therefore, somewhat larger, with respect to the theory, exponent pχ .
This widening is confirmed by many observations (e.g. Babanin & Soloviev 1998b)
and can be, for example, characterized by the spectral width parameter ν as follows
(Belberov et al. 1983)

ν =
ε

ωpε(ωp)
.

Experimental studies give an integral estimate of ν only, but not details and physical
mechanisms of the widening. Analysis of our numerical runs shows that the spectral
‘core’ keeps its shape quite well in the process and the widening is mainly due to the
non-self-similar background. In groups 3 and 4, this fine effect is likely to be buried
in the noise resulting from inclusion of composite, laboratory data sets (group 4) or
from the one-point measurements with questionable time-to-fetch conversion of the
time series (Evans & Kibblewhite 1990; Davidan 1996). Consequently, the data points
of these groups are scattered around the theoretical curve rather than being above
the line.

Note, that results of the Black Sea experiment, airborne measurements in the
North Atlantic (Walsh et al. 1989) and the Bothnian Sea observations (Kahma &
Calkoen 1992) produce very different pχ and qχ exponents while being quite close
to the theoretical line. Thus, they demonstrate the universality of the wave-growth
dependencies in the sense of the weakly turbulent law (1.9), but not in the rigid
framework of the ‘experimental tradition’.

We speculate here, within the proposed theory, on the differences between wave
development under different atmospheric stabilities. First of all, the observed difference
justifies once more the inadequacy of wind speed scaling: at close magnitudes of the
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wind speed, the exponents and pre-exponents of wave growth are essentially different
(compare pairs of dependencies by Kahma & Calkoen 1992, in table 2), development
under unstable stratification being faster. The explanation can be found in terms
of flux dependence on wave development. The wave growth depends crucially on
the wave-induced turbulent pulsations of pressure in the air, their magnitude and
coherence with the wave slope. Under the unstable conditions, convective turbulence is
additionally superposed over such wave-induced turbulence and reduces the coherence
of the pressure pulsations with wave slope. This should lead to a reduction of the
wind input compared to the stable conditions at early stages of wave development
(small waves). As the waves grow, the magnitude of the wave-induced turbulence
increases, whereas magnitude of the convective turbulence remains relatively constant.
Therefore, for the unstable conditions, as the waves grow, the relative wind input
grows faster (or decays slower) if compared to the stable conditions. According to
the presented theory this should lead to greater values of exponent pχ (see above)
which is indeed observed in the experiment. Thus, the theory not only allows us to
predict the behaviour of the growth exponents and justify the variability of these
exponents between different experiments, but also explains qualitative peculiarities
of such growth, such as those differences between growth in stable and unstable
conditions, between growth at constant, rising and decreasing winds.

4.2.2. Group 2. Composite data

Reasons for possible deterioration of group 2 are intimately connected with the key
issue of our analysis: scaling of wind-wave growth. Such scaling applied by different
authors to their original data in order to obtain non-dimensional dependencies
typically involves wind speed as an external parameter, whereas within our approach
the self-similar behaviour is controlled by intrinsic wave-field properties and has
to be scaled by the corresponding external parameter – total net input (see (2.1)).
The wind and the net wave input are not completely independent, and that is
why the Kitaigorodskii-like scaling has been successful to an extent so far, with
obvious limitations in many cases. However, the wind and the net wave input are not
directly and unambiguously related either. Therefore, the wind scaling can corrupt
our weakly nonlinear physics in two ways: first, by using instantaneous wind speed,
as was criticized above, and secondly, by collecting data from different sources. The
latter is often done in order to have a ‘more representative’ set in terms of the
Kitaigorodskii approach, but such a compilation may prove unsuitable for the weak-
turbulence theory. Data for different conditions of air–sea interaction (atmosphere
stability, gustiness etc.) and hence for different rates of wave growth being put together
are not supposed to satisfy our theoretical relationships.

The ‘representativeness’ of wave growth dependence by Dobson et al. (1989)
(case 2.1 in tables 2 and 3) has been achieved by collecting data for different directions
with respect to the shoreline. Authors themselves stress a pronounced difference of
wave growth for the different directions (see figure 6 in Dobson et al. 1989). The
feature that makes this work useful for our analysis is the fetch-averaged wind
speed used for data scaling (point 1 in Concluding remarks of Dobson et al. 1989).
Authors came to this decision because of the absence of reliable in situ wind data and
considering that ‘the fetch-averaged wind must represent a time and space history
of the wave field’. Note, that exponents of wave growth for this case conform the
theoretical relationship (2.38) quite well. Nevertheless, we put this case into group 2
for formal reasons: composite data were used for deriving wave growth dependencies.
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Kahma & Pettersson (1994) and Pettersson (2004) had the same problem for their
data collected in a broad range of fetches and with various shoreline geometry
in the Baltic Sea. Despite formally good conformance of power-law fits with
previous results by Kahma & Calkoen (1992) (and with our theoretical relationship
(2.38)), the authors found a strong scatter of experimental points. Their conclusion
(Kahma & Pettersson 1994, p. 262) that ‘the effective fetch concept is a poor
approximation’ agrees with our point: wind speed and fetch are not the only physical
parameters that determine air–sea interaction and the resulting wave growth. This
conclusion is best supported by the study for narrow bays (Kahma & Pettersson
1994) where conditions of air–sea interaction can vary dramatically.

The most representative collections (cases 2.3, 2.4) are based on subsets of JON-
SWAP data (Hasselmann et al. 1973). Kahma & Calkoen (1992) in their thorough in-
vestigation of differences between various parameterizations of wave integral proper-
ties demonstrated that, for JONSWAP data, many ‘noisy’ spectra were included. When
we (not Kahma & Calkoen 1992) call these spectra ‘noisy’ we do not mean measure-
ment noise. As Kahma & Calkoen (1992) describe it: ‘many of the spectra from the
JONSWAP experiment show more structure’ compared to other experiments, i.e. their
form is often not that due to generation by the wind only, but reveals the presence of
mixed seas, swell etc. Also, cases of gusty, constant, rising and decreasing winds were
not separated, neither were situations of stable and unstable stratification. In terms of
our approach this means mixing together occurrences of different growth parameters,
which leads to an unpredictable average. Once Kahma & Calkoen (1992) performed
the separation of different subsets within JONSWAP data, scatter of the reanalysed
data significantly decreased and parameters of the dependencies noticeably changed.

Case 2.5 shows an additional example of composite data sets. Stable and unstable
data (cases 1.3 and 1.4) mixed together into a composite data set (case 2.5 in table 2)
produce an intermediate result. The resulting exponents appear to be closer to the
unstable case than to the stable case.

Scatter of Donelan et al. (1985) data (case 2.6) was discussed in detail by Kahma &
Calkoen. They argued that this data set could have an additional scatter because the
stable and unstable stratification data points were used together. Kahma & Calkoen
(1992) also pointed out that the Lake Ontario pχ could have suffered an additional
loss of accuracy because Donelan et al. (1985) did not obtain it directly and therefore
for their data it is derived from the energy versus peak frequency dependence, which
is subject to strong spurious correlations.

The SMB data (case 2.7) were obtained in the early years of wave research, soon
after the Second World War and are reported here as they are formulated by Young
(1999). In those days, measurements and data-processing procedures were far less
accurate than they are now and even were in the 1970s. The results were summarized
in CERC (1977) where dependencies of dimensionless energy and peak frequency
on dimensionless fetch were expressed in terms of functions of hyperbolic tangent.
The power-law functions quoted here were then obtained as asymptotic forms of
the tangent functions. After so many manipulations, the SMB CERC curves can be
expected to produce some lack of accuracy. In fact, they behave surprisingly well,
particularly if compared to those obtained in the 1970s and early 1980s. One possible
reason for such a good conformation with the sophisticated measurements of late
1980s and 1990s is that, because of very limiting data recording and processing
capacities, bulk processing was not possible and therefore the data would go through
careful selection.
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4.2.3. Group 3. ‘Bad’ dependencies

Dependence by Wen et al. (1989) is the closest outlier in terms of the theoretical exp-
onents pχ, qχ . It was obtained as a mean dependence over five empirical dependencies
including cases 4.1 (Hasselmann et al. 1973) and 2.3 (Davidan 1980) considered here
and formulae adopted by the national coastal engineering committees of USSR, USA
and China. The idea of ‘universal’ wave-growth law has been realized in this paper
in its extreme form by collecting and averaging a number of possible dependencies.
We should mention that averaging parameters of parameterizations based on
different data sets, rather than combining the data sets in order to obtain an average
parameterization, is a questionable approach for statistics, but as we said in this
paper, we are attempting to analyse all published wave-growth dependencies.

Two points from the Evans & Kibblewhite (1990) experiment (cases 3.2 and 3.3)
lie below the theoretical line and therefore, if our approach is right, it is most likely
that the dependence of peak frequency on fetch is too strong (i.e. exponent qχ is
too large). The two points correspond to different stratifications and the data as
such went through very thorough selection and only ‘clean’ spectra of purely wind-
generated waves with known fetch were selected. This dimensional fetch, in fact, was
almost always the same, some 200 km, and since the measurements were made from
a stationary platform, this is a classical case when variation of the dimensionless
parameters was achieved mostly because of variation of the wind. In such cases,
as Kahma & Calkoen (1992) pointed out, since all the dimensionless parameters
depend on the wind speed, spurious correlations may arise: ‘if the common variable
is inaccurate and all the other variables are nearly constant, the correlation between
the dimensionless variables can be entirely spurious’. According to Kahma & Calkoen
(1992), for peak frequency on fetch dependence, such a spurious correlation would
lead to qχ = 1/2. If the correlation is only partially spurious, it would, apparently, tend
to overestimate the values of qχ which naturally are expected in the range qχ = 1/4 to
qχ =1/3. This is most probably what happened, particularly as the wind over 200 km
fetch could hardly have been measured with great precision. It is important to mention
that, according to Kahma & Calkoen (1992), the variance-on-fetch dependence is
much less subject to the spurious correlations.

Another set of pχ = 1 and qχ =1/3 dependencies, those by Kahma (1981, 1986)
(cases 3.4 and 3.5) appear to have had their exponents forced to the fixed values in
an attempt to evaluate the respective pre-exponents. The enforcing was justified on
the basis of semi-empirical considerations of assumed growth behaviour of assumed
spectral shapes. Kahma & Calkoen (1992) later revisited the same data set and, based
on the statistical fit, produced power-law dependencies discussed in list 1 of table 2
(cases 1.3 and 1.4).

Dependence 3.6 by Donelan et al. (1992) similarly to the above case (Evans
& Kibblewhite 1990) is based on one-point measurements and suffers the same
problem of spurious correlations of the resulting non-dimensional energy, frequency
and fetch. Additionally, the choice of energy-growth exponent has been partially
enforced by the JONSWAP results following the idea of the universality of wave
growth. The paper is concluded by a remarkable doubt of the authors cited above
and repeated again here: ‘Perhaps it is time to abandon the idea that a universal
power law for non-dimensional fetch-limited growth rate is anything more than an
idealization.’

Hwang & Wang (2004) and Hwang (2006) obtained the fetch-limited dependence 3.7
by means of conversion of one-point time series into dependence on fetch considering
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the spatial growth as more physically relevant. Note, that such a conversion is
heuristical rather than mathematically and physically well-founded.

When considering papers by Ross (1978), Liu & Ross (1980) (cases 3.8–3.10), our
first idea was to put them into group 2 by the formal criteria – ‘true fetch-limited’ set-
up. The airborne measurements were carried out in the Western Atlantic and North
Sea (Ross 1978) and along a number of tracks in Michigan Lake (Liu & Ross 1980).
Group 3 of ‘bad dependencies’ has been found more relevant after our attempts to
find an explanation for the striking deviations of exponents pχ, qχ from theoretical
dependence (2.38). The first dependence 3.8 (Ross 1978) was most probably affected
by inaccuracies in measurements of wind along the aircraft tracks and scaling of data
by instantaneous wind speed. Liu & Ross (1980) accepted this ocean wave-growth
dependence without any criticism and used it as the predetermined one for the case of
Lake Michigan where conditions of wind-wave interaction were probably (and, we be-
lieve, they certainly were) different from those in the Atlantic and North Sea. The au-
thors tried to justify their data points not being inconsistent with some predetermined
dependencies rather than attempting to produce a best statistical fit to those points.
Their figures 4 and 5 with points for the stable stratification are reproduced here as our
figure 10. Our best fit to the data is shown in this figure. This fit (pχ = 0.52, qχ =0.08)
is very different to that proposed by Liu & Ross (pχ = 1.1, qχ = 0.27), and our point
would go completely off the scale in figure 9 of the present paper. The truth would
be, apparently, somewhere in between if the Lake Michigan data were thoroughly
statistically re-analysed. In table 2 we give our best fit as well.

The dependence 3.9 in Liu & Ross (1980) was obtained for unstable atmospheric
conditions by a simple re-scaling of the wind speed within the logarithmic boundary-
layer concept: only pre-exponents of wave-growth dependencies ε0, ω0 were changed
whereas previous exponents pχ and qχ were enforced (case 3.8).

Case 3.11 (Davidan 1996) gives maximal deviation from the theoretical depen-
dencies, but is of special interest to us. This case can be considered as conceptually
opposite to our approach. Davidan (1996) tried to scale different data sets by friction
velocity u∗ rather than by wind speed Uh at a reference height. Using the logarithmic
wind speed profile as a model of the atmospheric boundary layer, he re-derived the
wave-growth law for the new scaling for a number of data sets including JONSWAP.
Thus, he linked implicitly universality of wave growth to universality and the leading
role of wave-wind interaction. Alternatively, the asymptotic split balance model we
used here to derive weakly nonlinear growth law (1.9) results from the leading role of
nonlinear wave-wave interactions.

4.2.4. Group 4. Effect of wave tank data

Laboratory data are inapplicable to our theory, as was stressed above. This is why
we finalize our list by two classical works on the problem of wave growth (Hasselmann
et al. 1973; Mitsuyasu et al. 1971) which do include such data.

The kinetic description of water waves becomes invalid at typical rather short
scales of wave development in wave tanks comprising at very best a few hundred
wave periods. Therefore, wave tank data are completely irrelevant to our model of
wind-wave sea. The use of laboratory data will corrupt the resulting dependencies in
an unpredictable way. In the cited papers (Hasselmann et al. 1973; Mitsuyasu et al.
1971) these data seem to have corrupted the peak frequency dependence more than
they did the energy dependence. Once Davidan (1980) and Phillips (1985) removed
the laboratory data, the value of qχ changed from 0.33 down to 0.28 and 0.25 whereas
the value of pχ stayed unchanged.
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A number of other data points in our graphs (i.e. Mitsuyasu et al. 1971; Kahma
1981) reside precisely or almost precisely at the same location as the JONSWAP
point (Hasselmann et al. 1973). It would be fair to mention that, although widely
used dependencies with pχ = 1 and qχ = 1/3 are routinely attributed to the JONSWAP
results, it was Mitsuyasu et al. (1971) who first obtained them. Therefore, it is possible
that the need to attach the laboratory data to the field measurements of JONSWAP
was brought about by a desire to conform with the Mitsuyasu et al. (1971) results; and
dependencies of Mitsuyasu et al. (1971, 1982), just like the dependencies of JONSWAP,
were based on a composite data set which included both the field and laboratory
data. Besides, the field data of Hakata Bay (Mitsuyasu et al. 1971) belonged to quite
short fetches, all below 8 km, and, thus, the relatively narrow range of fetch would
give an additional support to the bias owing to the inclusion of the wave tank data.

Finalizing this analysis of the four groups of data points, we should emphasize the
difficulty of sorting available wave-growth dependencies by formal criteria. Sometimes,
dependencies relied upon in composite data sets show better conformance with theory
than ‘true fetch-limited’ ones (e.g. 2.1 by Dobson et al. 1989), sometimes we have to
move ‘true fetch-limited’ dependencies to the end of the list (e.g. Liu & Ross 1980)
owing to suspicious data processing. We need an additional step – analysis of wave
growth pre-exponents to make our sorting of the dependencies consistent.

4.3. Pre-exponents of fetch-limited wind-wave growth

Figure 11 shows the parameter of self-similarity αss as a function of pχ estimated
in accordance with (4.1). The range of ‘legitimate’ changes of the parameter αss for
‘the cleanest’ group 1 is from 0.3 to 0.65 (figure 11a). We should point out that this
range should not be treated as a statistical scatter only around some universal value.
Different values of αss are possible because it is a function of the rate pχ , as was
mentioned in the previous sections. Magnitudes of αss for groups 1 and 2 appear to
be surprisingly close to that for the duration-limited case (see § 3.3. and figure 7). The
proximity of duration- and fetch-limited estimates of the self-similarity parameter
αss confirms (maybe somewhat indirectly) the general nature of the weakly turbulent
relationship (1.9): the link of wave energy to the flux (total net input) does not depend
on the wave-growth set-up. In the absence of numerical results for the fetch-limited
wave development, this agreement of the estimates is of special value. This means
that results of the duration-limited simulation can, with some caution, be applied
to fetch-limited conditions for which such simulations are not available. Note that,
strictly speaking, self-similarity parameters αss in duration- and fetch-limited cases
are not identical in terms of relationships ((2.21), (2.43)) that imply particular scaling
of characteristic frequency ω∗.

The consistent estimates of αss in groups 1 and 2 of our collection look remarkable
and can be considered as a recognition of high quality of experimental measurements
of wave growth. Equation (4.1) contains the pre-exponent of power fit in high power
ω̃

10/3
0 that makes estimates of αss very sensitive to errors of power-law fit. The pre-

exponent ω̃0 in table 2 varies by factor 1.5 and its counterpart ε̃0 by 6.8.
Subsets of the JONSWAP experiment (cases 2.3 and 2.4) provide maximal outliers

that can probably be explained by the effect of composite data sets. αss for the full
JONSWAP data set (case 4.1, figure 11d) is significantly greater if compared to these
subsets. Obviously, this is an effect brought about by the laboratory data.

Group 3 shows a strong scatter of estimates of αss . Maximal values of αss are
found in cases 3.4–3.6 where the wave growth exponent pχ was most probably
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Figure 11. Dependence of αss on pχ for fetch-limited experiments.

pre-determined by ‘reference figures’ of JONSWAP (Hasselmann et al. 1973). The
errors in pre-determined exponents pχ are not important by themselves (power −1/3
in (4.1)), but this constraint leads to errors of pre-exponents ε0, ω0 that enter the
formula for αss to high powers. Similar enforcement of pχ in cases 3.9–3.10 gives
anomalously low values of αss .

Case 3.11 by Davidan (1996) requires a special comment: the estimate of αss = 3.74
is beyond the limits of figure 11 (see table 3). As expected, the alternative scaling by
Davidan (1996), which was fully re-normalized in terms of friction velocity, appears
to be completely incomparable with the rest of 23 the dependencies if considered in
terms of our weakly turbulent relationship (1.9). Thus, the idea of Davidan (1996)
itself on universal scaling of wave growth by instantaneous friction velocity u∗ (and,
hence, on a leading wind-wave interaction) is not consistent with our approach based
on the hypothesis of dominating wave-wave coupling.

5. Discussion
5.1. Toba law as a particular case of the weakly turbulent wind-wave growth law

It should be noted that it is, in fact, the first time that ‘the laws of wind-wave growth’
(as it is written in the paper title) are proposed in the sense that specific mechanisms
of the growth are identified and described in terms of adequate physical quantities.
Multiple mechanisms and the complexity of air–sea interaction lead workers to focus
on cumbersome models of wind-wave growth rather than on the compact physics
of wind-wave development. The only attempt to derive ‘a true physical law’ was by
Toba (1972, 1793a, b).
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The 3/2 Toba’s law was derived from ‘the local balance’ of weakly nonlinear
Stokes drift of water particles and wind stress. The Hasselmann kinetic equation and
the associated nonlinear transfer escaped Toba’s attention completely. Nevertheless,
the conclusions showed a fairly good agreement with observations. Moreover, it can
be shown that the Toba law can be considered, formally, as a particular case of the
weakly turbulent law.

Assuming the net input dε/dt be constant, we immediately obtain the 3/2 law from
(1.9): Toba law corresponds to the stationary energy input through wave development.
Let us take Toba law in the following form (Toba 1997):

Hs = B(gu∗)
1/2T 3/2

s ,

where subscript s for period and height means ‘significant’, and B =0.062. Converting
significant wave height and wave period into the conventional energy and peak
frequency, we have

εω4
p

g2
=

(
π9B6u3

∗
g

ω3
p

g2

)1/3

.

Comparing with our law (1.9), we can obtain the rate of total energy accumulated by
waves

dε

dt
=

π9B6u3
∗

g
= 0.0017

u3
∗

g
.

Evident substitution should be made, taking into account the relative weakness of
wind-wave interactions due to the differences of air and water densities

dε

dt
= 1.3

ρair

ρwater

u3
∗

g
. (5.1)

The estimate looks reasonable. Recent estimates of flux dε/dt based on a thorough
study of the extensive data collection (Resio, Long & Vincent 2004) are consistent
with (5.1) quantitatively.

Within the presented approach we are not able (have no right, in fact) to relate wave
growth with characteristics of atmosphere (e.g. u∗). Within the split wave balance, we
operate with the fluxes of energy (action, momentum) accumulated by the waves, but
not with those coming from the wind (i.e. wind input minus dissipation). The physical
mechanisms responsible for these fluxes are subjects of ‘advanced theories’ that take
into account details of wind–sea interactions. We made just a first approximation that
shows the importance of intrinsic nonlinear wave evolution for wind-wave growth.
Alternative approaches (Toba’s is a representative example of this kind) skip this step,
focusing on coupling of waves and atmosphere and, thus, belittling, unintentionally,
inherent features of nonlinear evolution of water waves.

Significance of the interpretation of the Toba law in terms of the present theory,
however, extends far beyond an interesting academic exercise. Since the fetch-limited
development commonly exhibits pχ ≈ 1 (see table 2), i.e. approximately constant
energy flux, friction velocity u∗ can be used to estimate this flux in such special circum-
stances according to (5.1). We must stress here that it is not true in the general case:
exponents pτ ≈ 3/2 were observed in the Norwegian Sea (Sanders 1976; Janssen,
Komen & Voogt 1984) that correspond to energy flux growing with time as

√
t .

In some experimental records in the Black Sea (Babanin & Soloviev 1998b), this
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anomalously steep wave growth has been observed as well. These cases will be
studied in a separate paper.

5.2. Equilibrium range balance of wind-driven waves by Resio et al. (2004)

Within the split-wave balance concept, we operate with the fluxes of energy (action,
momentum) accumulated by the waves, but not with those coming from the wind
(i.e. wind input minus dissipation). In this way, we split, in fact, an intrinsic dynamics
of waves and dynamics of air–sea interaction. A consistent development of our
approach, thus, implies a specific ‘flux language’ to fit the wave-wave and wind-wave
interactions. An important step in this direction has been made by Resio et al. (2004).

Resio et al. (2004) related spectral fluxes in the equilibrium range of wind-wave
spectra (the frequency range of quasi-constant fluxes) to ‘an effective, or net, wind
input’. The proposed parameterization of the net input (equation 19 in Resio et al.
2004) is consistent with Toba’s estimates (5.1) and allows us to estimate the total
energy from our weakly turbulent law (1.9),

εω4
p

g2
= αssα4C

1/3
nl

u10 − u0

2Cp

, (5.2)

where Cp = g/ωp – phase speed of spectral peak waves. In accordance with Resio
et al. (2004) Cnl = 0.4 and α4 = 0.006 (see table 2 for u10 scaling). Accepting the
estimate of αss = 0.5 for the self-similarity parameter, we have

εω4
p

g2
= 0.0011

u10 − u0

Cp

, (5.3)

which is very close to the JONSWAP parameterization of wind-wave energy (e.g.
Hasselmann et al. 1973; Babanin & Soloviev 1998a). Thus, our approach extends
results by Resio et al. (2004): rigid links of spectra and spectral fluxes in an equilibrium
domain appear to be valid for a whole wind-wave range owing to self-similarity and
quasi-universality of wind-wave spectra.

6. Conclusions
We finalize this paper by summarizing our results.
(i) First of all, the key theoretical result should be emphasized: evolution of

growing waves is asymptotically governed by the weakly turbulent law (1.9). This law
dictates dependence of the wave energy on spectral flux (total net input). The basic
physical constant α∗

ss in (1.9) is a direct analogue of the Kolmogorov constants in the
theory of weak turbulence (Zakharov & Filonenko 1966; Zakharov & Zaslavsky 1982;
Zakharov et al. 1992). Note that the weakly turbulent law (1.9) does not depend on
such features of wave development as duration- or fetch-limited set-up: estimates of
the self-similarity parameter αss from numerical experiments and from experimental
dependencies for duration- and fetch-limited cases gave remarkably close values.

(ii) The theory was verified by means of field experiment data. Available integral
fetch-limited dependencies (23 cases) were re-analysed and related to the weakly
turbulent self-similar relationships (1.9), (2.10), (2.38). Those corresponding to the
self-similar development were identified on the basis of physics, data quality and
initial data processing procedures. We should stress that we did not rely on theoretical
results when sorting out the dependencies as ‘good’ or ‘bad’.

(a) First, the wave tank data, compared to the field data, should be related
to a completely different physics which cannot be described by the kinetic
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Hasselmann equation. Corresponding dependencies (e.g. Mitsuyasu et al. 1971,
1982; Hasselmann et al. 1973) based on ‘composite’ data sets should be excluded
from further analysis unconditionally.
(b) Secondly, dependencies comprising spurious correlations of data owing to
inadequate wind speed scaling or one-point measurements, as well as dependencies
based on ‘noisy’ composite data sets corresponding to different rates of wave
growth, should be filtered out as well.

‘True’ experimental exponents pτ (χ), qτ (χ) are found to satisfy theoretical relationships
quite well. Energy growth exponent pτ (χ) exhibits a small positive bias if compared
with the theoretical dependence both in duration- and fetch-limited cases. This is
explained by the effect of a growing non-self-similar wave background that broadens
the spectra. Experimentally, this broadening is observed as an integral spectral
feature. Numerical experiments allow us to relate this effect to a periphery of wave
spectra. In contrast to the ‘traditional’ vision of universality of exponents pτ (χ), qτ (χ),
they can vary in a wide range, demonstrating a ‘flexibility’ of this aspect of wave
growth.

(iii) The self-similarity parameter αss should be viewed, if compared with exponents
pτ (χ), qτ (χ), as a more rigid feature of wave development: in spite of difficulties of
estimating αss from experimental and numerical results (e.g. high powers of ω0 in
(3.4), (4.1)), it varies in a relatively narrow range which reflects the universality of
the energy-flux relationship. Experimental estimates of αss were obtained for the first
time. For stable or slowly growing wind speeds, at the moment we can recommend
αss = 0.55 ± 0.25: more detailed estimates of this basic physical parameter is a subject
of further study. It was confirmed that fetch-limited and time-limited values of αss

are close, which is consistent with the basic concept of a weakly turbulent scenario:
the concept of a rigid link between energy and energy flux.

Other results should be also listed here as important and useful consequences of
the general weakly turbulent physics of wind-wave growth.

(a) A novel approach to the analysis of wind-wave data – method of energy-flux
diagram – was proposed as an effective tool to identify the weakly turbulent stage of
wind-wave evolution both qualitatively and quantitatively. Its efficiency was illustrated
for results of numerical solutions of the Hasselmann equation. The capacity of the
method for the analysis of a wider set of field experimental data and its consistency
with conventional data-processing routines should be tested.

(b) Analysis of a particular case of constant energy input which corresponds to
the Toba 3/2 law shows an important implication of our results for the wind–sea
studies: the weakly turbulent relation of energy and flux allows us to determine the net
flux coming to waves, based on knowledge of the wave energy. This is an extremely
promising direction of wind-wave studies: fluxes in atmosphere can be estimated from
an instantaneous state of growing wind sea.

The study refines and essentially extends the concept of universality of wind-wave
growth as such: parameters of wave growth are not fixed values for some ‘ideal’
conditions, but depend on magnitudes and rates of fluxes of energy (wave action,
momentum) to waves and, thus, can be predicted for a much broader range of
conditions of growing wind-driven waves.
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